-7x-5v^4+5+7x^4+5+9x-=
2x^4+2x+10
<span> I am assuming you want to prove:
csc(x)/[1 - cos(x)] = [1 + cos(x)]/sin^3(x).
</span>
<span>If we multiply the LHS by [1 + cos(x)]/[1 + cos(x)], we get:
LHS = csc(x)/[1 - cos(x)]
= {csc(x)[1 + cos(x)]/{[1 + cos(x)][1 - cos(x)]}
= {csc(x)[1 + cos(x)]}/[1 - cos^2(x)], via difference of squares
= {csc(x)[1 + cos(x)]}/sin^2(x), since sin^2(x) = 1 - cos^2(x).
</span>
<span>Then, since csc(x) = 1/sin(x):
LHS = {csc(x)[1 + cos(x)]}/sin^2(x)
= {[1 + cos(x)]/sin(x)}/sin^2(x)
= [1 + cos(x)]/sin^3(x)
= RHS.
</span>
<span>I hope this helps! </span>
The first step is to write each factor in expanding notation.
This is:
- 124 = 100 + 20 + 4
- 2 = 2
Now muliply 2 times each term of the terms 100, 20 and 4
=> 2 * 100 = 200
2 * 20 = 40
2 * 4 = 8
Then,
(100 + 20 + 4 )
x 2
-----------------------
8
40
200
------------------------
248
Answer:
6.14125(0.15) = 0.9211875 (below 1)
6.14125 - 0.92118 = 5.22007
Step-by-step explanation:
Given data
1. 10(.15)=1.5
2. 10-1.5=8.5
3. 8.5 (.15)=1.275
4. 8.5-1.275=7.225
continuation the sequence
5) 7.225 (0.15) = 1.08375
6) 7.225 - 1.08375 = 6.14125
7) <u> 6.14125(0.15) = 0.9211875 (below -one)</u>
8 ) <u> 6.14125 - 0.9211875 = 5.2200625 (get number 5)</u>
9) 5.2200625(0.15) = 0.783009
10) 5.2200625 - 0.783009 = 4.4370532