The sample has a new pressure of 274kPa. If at 105 kPa and 275K, a 220 mL sample of helium gas is contained in a cylinder with a moving piston. The sample is pushed till it has a 95.0 mL volume and 310K .
The macroscopic characteristics of ideal gases are related by the ideal gas law (PV = nRT). A gas is considered to be perfect if its particles (a) do not interact with one another and (b) occupy no space (have no volume). Where P= pressure V= volume and T = temperature.
From ideal gas equation
P₁V₁/T₁ =P₂V₂/T₂
105×220÷275 = P₂ ×95÷310
P₂= (105×220×310)÷(275×95)
P2= 7161000/26125
P2 = 274.105 kPa
Hence, the new pressure of helium gas is 274kPa
To know more about Ideas gas equation
brainly.com/question/28837405
#SPJ1
Answer:
1.2 atm
Explanation:
Given data
- Volume of the gas in the tank (V₁): 200.0 L
- Pressure of ethylene gas in the tank (P₁): ?
- Volume of the gas in the torch (V₂): 300 L
- Pressure of the gas in the torch (P₂): 0.8 atm
If we consider ethylene gas to be an ideal gas, we can find the pressure of ethylene gas in the tank using Boyle's law.
The answer is: A molecule with a difference in electrical charge between two ends.
Electronegativity (χ) is a property that describes the tendency of an atom to attract a shared pair of electrons.
Atoms with higher electronegativity attracts more electrons towards it, electrons are closer to that atom.
For example fluorine has electronegativity approximately χ = 4 and oxygen χ = 3,5, fluorine attracts electron and he has negative charge and oxygen has positive charge.
Chlorine is a halogen and all halogens and oxygen, nitrogen and hydrogen are diatomics