The color it produces is Bright green.
Answer:
This question appears incomplete
Explanation:
There is no such element known as "Ballardium (Bu)" in the periodic table. However, there are elements with a bit of similarity in spellings and pronunciation such as Beryllium (Be) which is found in group 2 (meaning it is an alkali earth metal), Berkelium (Bk) which is an actinide (meaning it is radioactive) and Vanadium (V) which is found in group 5 of the periodic table (meaning it's a transition metal).
Answer : The protons and neutrons subatomic particles will be located at Z.
Explanation :
In the model of an atom, there are three subatomic particles. Protons, neutrons and electrons are the subatomic particles.
The protons and the neutrons subatomic particles are located inside the nucleus and the electrons subatomic particle are located around or outside the nucleus.
The protons are positively charged, electrons are negatively charged and neutrons are neutral that means it has no charge.
In the given dartboard, Z is the nucleus in which the protons and neutrons subatomic particles are present and x, w & y are the electrons because they are located around the nucleus.
Hence, the protons and neutrons subatomic particles will be located at Z.
setup 1 : to the right
setup 2 : equilibrium
setup 3 : to the left
<h3>Further explanation</h3>
The reaction quotient (Q) : determine a reaction has reached equilibrium
For reaction :
aA+bB⇔cC+dD
![\tt Q=\dfrac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Comparing Q with K( the equilibrium constant) :
K is the product of ions in an equilibrium saturated state
Q is the product of the ion ions from the reacting substance
Q <K = solution has not occurred precipitation, the ratio of the products to reactants is less than the ratio at equilibrium. The reaction moved to the right (products)
Q = Ksp = saturated solution, exactly the precipitate will occur, the system at equilibrium
Q> K = sediment solution, the ratio of the products to reactants is greater than the ratio at equilibrium. The reaction moved to the left (reactants)
Keq = 6.16 x 10⁻³
Q for reaction N₂O₄(0) ⇒ 2NO₂(g)
![\tt Q=\dfrac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
Setup 1 :

Q<K⇒The reaction moved to the right (products)
Setup 2 :

Q=K⇒the system at equilibrium
Setup 3 :

Q>K⇒The reaction moved to the left (reactants)
Answer:
according to the law of circumference and the perpendicular area of a circle the answer would be c
Explanation: