B. Helium because it is constantly being made in the sun
Explanation:
From the given paragraph, we can conclude that helium is the most common element in a star such as the sun because it is constantly being made.
In the nuclear fusion process that results in the production of helium, hydrogen nuclei are the reactants and helium is the product.
- since the reactants are constantly being used in the core of the sun, this suggests that the products must be more.
- The reaction requires a high temperature and pressure to initiate.
- It is a series of chain reaction that uses a fuel of hydrogen to produce helium.
learn more:
Transmutation brainly.com/question/3433940
#learnwithBrainly
Not sure but just coming to say good luck and take your time
Answer:
n=2.053
Explanation:
We will use Snell's Law defined as:

Where n values are indexes of refraction and
values are the angles in each medium. For vacuum, the index of refraction in n=1. With this we have enough information to state:

Solving for
yields:

Remember to use degrees for trigonometric functions instead of radians!
Answer:
Explanation:
General equation of the electromagnetic wave:
![E(x, t)= E_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]](https://tex.z-dn.net/?f=E%28x%2C%20t%29%3D%20E_0sin%5B%5Cfrac%7B2%5Cpi%7D%7B%5Clambda%7D%28x-ct%29%2B%5Cphi%20%5D)
where
Phase angle, 0
c = speed of the electromagnetic wave, 3 × 10⁸
wavelength of electromagnetic wave, 698 × 10⁻⁹m
E₀ = 3.5V/m
Electric field equation
![E(x, t)= 3.5sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6x-2.7\times 10^{15}t)]](https://tex.z-dn.net/?f=E%28x%2C%20t%29%3D%203.5sin%5B%5Cfrac%7B2%5Cpi%7D%7B6.98%5Ctimes10%5E%7B-7%7D%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CE%28x%2C%20t%29%3D%203.5sin%5B%7B9%20%5Ctimes%2010%5E6%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CE%28x%2C%20t%29%3D%203.5sin%5B%7B9%20%5Ctimes%2010%5E6x-2.7%5Ctimes%2010%5E%7B15%7Dt%29%5D)
Magnetic field Equation
![B(x, t)= B_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]](https://tex.z-dn.net/?f=B%28x%2C%20t%29%3D%20B_0sin%5B%5Cfrac%7B2%5Cpi%7D%7B%5Clambda%7D%28x-ct%29%2B%5Cphi%20%5D)
Where B₀= E₀/c

![B(x, t)= 1.2\times10^{-8}sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6x-2.7\times 10^{15}t)]](https://tex.z-dn.net/?f=B%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%5Cfrac%7B2%5Cpi%7D%7B6.98%5Ctimes10%5E%7B-7%7D%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CB%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%7B9%20%5Ctimes%2010%5E6%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CB%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%7B9%20%5Ctimes%2010%5E6x-2.7%5Ctimes%2010%5E%7B15%7Dt%29%5D)