First, find how many copper atoms make up the ball:
moles of atoms = (49.3 g) / (63.5 g per mol of atoms) = 0.<span>77638</span><span>mol
</span> # of atoms = (0.77638 mol) (6.02 × 10^23 atoms per mol) = 4.6738*10^23<span> atoms </span>
<span> There is normally one electron for every proton in copper. This means there are normally 29 electrons per atom:
</span> normal # electrons = (4.6738 × 10^23 atoms) (29 electrons per atom) = <span>
<span>1.3554</span></span><span>× 10^25 electrons
</span>
<span> Currently, the charge in the ball is 2.0 µC, which means -2.0 µC worth of electrons have been removed.
</span><span> # removed electrons = (-2.0 µC) / (1.602 × 10^-13 µC per electron) = 1.2484 × 10^13 electrons removed
</span><span> # removed electrons / normal # electrons = </span>
<span>(1.2484 × 10^13 electrons removed) / (1.3554 × 10^25 electrons) = 9.21 × 10^-13 </span>
<span> That's 1 / 9.21 × 10^13 </span>
The earth all the way around is 196.9 million miles
The value that should be reported for the total mass of three samples of iron will be 0.143 Kg or 143 g
<h3>
What is Mass and Weight ?</h3>
Mass is the quantity of matter. While weight is a gravitational pull on an object. Mass is measured in Kg while weight is measured in Newton.
What value should be reported for the total mass of three samples of iron weighing 117.0 g, 19.43 g, and 6.1043 g?
The total mass will be the sum of the three masses.
The total mass = 117 + 19.43 + 6.1043
The total mass = 142.5343 g
Convert gram to kilogram by dividing the answer by 1000
The total mass = 142.5343/1000
The total mass = 0.1425343 Kg
Therefore, the value that should be reported for the total mass of three samples of iron will be 0.143 Kg or 143 g approximately
Learn more about Mass and Weight here: brainly.com/question/1384116
#SPJ1
The maximum magnitude of their resultant vector is when the two vectors are parallel and in the same direction, so they lie on the same axis. In this case, the magnitude of their resultant vector is simply the sum of the two magnitudes:

The minimum magnitude of their resultant vector is when the two vectors are parallel but in opposite direction. In this case, the magnitude of their resultant vectors is just the difference between the two magnitudes:

Answer:
<h2>9.3kN</h2>
Explanation:
Step one:
given data
mass of bullet= 0.02kg
speed v=700m/s
time taken =1.5ms= 0.0015 seconds
Step two:
we know that from the first law
F=ma-----1 first law of motion
also, we know that
a=v/t----2
put a=v/t in equation 1 we have
F=mv/t
Step three:
substitute our given data to find force
F=0.02*700/0.0015
F=14/0.0015
F=9333.33N
F=9.3kN
<u>The average force exerted is 9.3kN</u>