Answer:
c. add coefficients as needed
Explanation:
A chemical equation is defined as the equation that shows changes in a chemical reaction. A chemical equation consist of reactant and product, reactant is at left side of the arrow and product is at right side of the arrow.
Reactant => Product
While balancing a chemical equation, the basic rule is to balance the coefficient as required. Coefficient represents the number of molecules and is used at front of a chemical symbol. Change in coefficient helps balance the number of atoms or molecules of the substances on both the sides of the arrow.
Subscripts are never allowed to change because it can change the chemical involved in the reaction.
Hence, the correct answer is "c. add coefficients as needed".
Answer : The
for this reaction is, -88780 J/mole.
Solution :
The balanced cell reaction will be,

Here, magnesium (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half oxidation-reduction reaction will be :
Oxidation : 
Reduction : 
Now we have to calculate the Gibbs free energy.
Formula used :

where,
= Gibbs free energy = ?
n = number of electrons to balance the reaction = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = 0.46 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the
for this reaction is, -88780 J/mole.
Answer: 
Explanation:
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= 
= activation energy for the reaction = 262 kJ/mol = 262000J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get
![\log (\frac{6.1\times 10^{-8}}{K_2})=\frac{262000}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{775.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B6.1%5Ctimes%2010%5E%7B-8%7D%7D%7BK_2%7D%29%3D%5Cfrac%7B262000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B775.0K%7D%5D)


Therefore, the value of the rate constant at 775.0 K is 
Answer:
B. Composed of molecules relatively far apart.
Explanation:
The gas we call "air" has molecules that are relatively far apart.
Answer:
C) Highly reactive
Explanation:
An atom with one or two valence electrons more than a closed shell is highly reactive, because the extra valence electrons are easily removed to form a positive ion