Question is missing:
"What is the gravitational force between the Sun and Jupiter?"
Answer:

Explanation:
The gravitational force between two objects is given by

where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
In this problem, we have
is the mass of the sun
is the mass of Jupiter
is their separation
Solving the equation, we find

Answer: A.
tracking training through a leaming records store LRS.
Explanation:
An LRS uses xAPI to collect learner data, or experiences, from both online and offline sources. These experiences are reported back to the LRS in the form of xAPI statements, where they are stored. These statements can then be retrieved for reporting and interpretation of the learner data.
Given the final velocity (Vf) and the acceleration (a), the distance that should be traveled by the plane is calculated through the equation,
d = (Vf² - Vi²) / 2a
V1 should be zero because the light plane started the motion from rest. Substituting the given values,
d = ((33 m/s)² - 0)) / 2(3 m/s²)
The distance is therefore equal to 181.5 meters.
Answer:
x = 4,138 m
Explanation:
For this exercise, let's use the rotational equilibrium equation.
Let's fix our frame of reference on the left side of the pivot, the positive direction for anti-clockwise rotation
∑ τ = 0
n₁ 0 - W L / 2 + n₂ 4 - W_woman x = 0
x = (- W L / 2 + 4n2) / W_woman
Let's reduce the magnitudes to the SI System
M = 6 lbs (1 kg / 2.2 lb) = 2.72 kg
M_woman = 130 lbs = 59.09 kg
Let's write the transnational equilibrium equation
n₁ + n₂ - W - W_woman = 0
n₁ + n₂ = W + W_woman
n₁ + n₂ = (2.72 + 59.09) 9.8
At the point where the system begins to rotate, pivot 1 has no force on it, so its relation must be zero (n₁ = 0)
n₂ = 605,738 N
Let's calculate
x = (-2.72 9.8 6/2 + 4 605.738) / 59.09 9.8
x = 4,138 m