Answer:
if your title doesn't have enough information, make a list of the key words ... If you are not sure what should be included in each summary sentence, use ... Often you can present the hypothesis and the supporting reasoning in one paragraph. ... Describe specific parts of the procedure or data that contributed to your learning.
Explanation:
Answer:
61.3 g/mol
Step-by-step explanation:
We can use the <em>Ideal Gas Law</em> to solve this problem:
pV = nRT
Since n = m/M, the equation becomes
pV = (m/M)RT Multiply each side by M
pVM = RT Divide each side by RT
M = (mRT)/(pV)
<em>Data:
</em>
m = 0.675 g
R = 0.0.083 14 bar·L·K⁻¹mol⁻¹
T = 0 °C = 273.15 K
p = 1 bar
V = 250 mL = 0.250 L
<em>Calculation:
</em>
M= (0.675 × 0.083 14 × 273.15)/(1 × 0.250)
M= 15.33/0.250
M= 61.3 g/mol
Answer:
It's the Key to All Relationships. At the basis of all other emotions within a relationship is the sensation of love. When you feel loved, you feel less pressure, less alone, less anxiety, more secure, more confident, and more important.
Explanation:
Answer:
2.16 × 10⁻³
Explanation:
Step 1: Given data
Concentration of the acid (Ca): 0.260 M
Acid dissociation constant (Ka): 1.80 × 10⁻⁵
Step 2: Write the acid dissociation equation
HC₂H₃O₂(aq) + H₂O(l) ⇄ C₂H₃O₂⁻(aq) + H₃O⁺(aq)
Step 3: Calculate the concentration of H₃O⁺ at equilibrium
We will use the following expression.
![[H_3O^{+} ]= \sqrt{Ka \times Ca } = \sqrt{1.80 \times 10^{-5} \times 0.260 } = 2.16 \times 10^{-3}](https://tex.z-dn.net/?f=%5BH_3O%5E%7B%2B%7D%20%5D%3D%20%5Csqrt%7BKa%20%5Ctimes%20Ca%20%7D%20%3D%20%5Csqrt%7B1.80%20%5Ctimes%2010%5E%7B-5%7D%20%5Ctimes%200.260%20%7D%20%3D%202.16%20%5Ctimes%2010%5E%7B-3%7D)