Answer:
period 3 and group 3
Explanation:
I'm saying group 3 because that is how I learnt it at school, but if you count it then it's in group 13.
Answer:
a
Explanation:
the solution is extremely acidic and will dissolve the zinc rod
Answer:
2.93g
Explanation:first, let us calculate the number of mole of NaCl present in the solution. This is illustrated below:
Molarity = 0.5M
Volume = 100cm^3 = 100/1000 = 0.1L
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole of NaCl = 0.5 x 0.1 = 0.05mole
Now we can obtain the mass of NaCl as follows:
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mole of NaCl = 0.05mol
Mass of NaCl =?
Mass = number of mole x molar Mass
Mass of NaCl = 0.05 x 58.5
Mass of NaCl = 2.93g
Hey there!:
Molar mass MgCl2 = 95.2110 g/mol
So:
1 mole MgCl2 -------------- 95.2110 g
moles MgCl2 ---------------- 319 g
moles MgCl2 = 319 * 1 / 95.2110
moles MgCl2 = 319 / 95.2110
=> 3.350 moles of MgCl2
Hope that helps!
The energy that is
essential to break one C-H bond is 414 kJ/mol. Since, there are four C-H bonds
in CH4, the energy Δ HCH4 for
breaking all the bonds is calculated as Δ HCH4 = 4 x bond energy of C-H bond. By
multiplying the 4 with the 414 kJ/mol you can get the answer of 1656 kJ/mol CH4
molecules.