Okay, so you need to start by finding the molar mass (grams in one mole) of nitrogen monoxide (NO).
N=14g
O=16g
So we know that NO has a molar mass of 30 grams, then just divide your given mass of 22.5 grams by the molar mass of 30 grams to find the number of molecules in your sample. The answer should be .75 molecules. Hope this helps!
The answer for the following question is mentioned below.
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
Explanation:
Given:
Pressure of gas (P) = 1.2 atm
Volume of a gas (V) = 50.0 liters
Temperature (T) =650 K
To calculate:
no of moles present in the gas (n)
We know;
According to the ideal gas equation;
We know;
<u>P × V = n × R × T
</u>
where,
P represents pressure of the gas
V represents volume of the gas
n represents no of the moles of a gas
R represents the universal gas constant
where the value of R is 0.0821 L atm mole^{-1} K^-1
T represents the temperature of the gas
As we have to calculate the no of moles of the gas;
n = 
n = \frac{1.2*50.0}{0.0821*650}
n = \frac{60}{53.365}
n = 1.12 moles
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
Answer: The correct answer is option E
Explanation:
Sodium/potassium pump is a mechanism that involves the movement of sodium ions (Na+) out of a cell and potassium ions (K+) into a cell, thereby regulating concentration of ions on both sides of a typical cell membrane.
In this situation, the sodium-potassium pump is usually helps in the establishment of the resting potential. The potassium voltage channels normally closes before the membrane potential is brought to a resting level.
In summary, sodium/potassium pump helps to maintain a balance in the system.
Explanation:
The partial pressure of an individual gas is equal to the total pressure of the mixture multiplied by the mole fraction of the gas.
Total pressure = 2atm
Mole Fraction = number of moles / total number of moles
Neon
Mole Fraction = 4.46 / 7.35 = 0.607
Partial Pressure = 0.607 * 2 = 1.214 atm
Argon
Mole Fraction = 0.74 / 7.35 = 0.101
Partial Pressure = 0.101 * 2 = 0.202 atm
Xenon
Mole Fraction = 2.15 / 7.35 = 0.293
Partial Pressure = 0.293 * 2 = 0.586 atm