Answer:
8cm
Step-by-step explanation:
First you must know that the diameter of the semi-circular patio is equal to the length of one side of the square
Area of a semi circle = πr²/2
25.12 = πr²
25.12 = 3.14r²/2
r² = 25.12(2)/3.14
r² = 16
r = √16
r = 4
Get the diameter
d = 2r
d =2(4)
d = 8cm
Hence the length of the side of the square is 8cm
1. -3
2. 28
3. 88
4. -5
5. -28
Answer:
1260 inches squared
Step-by-step explanation:
Bottom: 24*6=144
Bottom front: 24*12=288
Bottom back: 24*12=288
Left side: 6*2=72
Right side: 6*12=72
Left top: 6*15=90
Right top: 6*15=90
Top front: (24*9)/2=216/2=108
Top back: (24*9)/2=216/2=108
144+288+288+72+72+90+90+108+108=1260
If your substituting the points (-1,4) the answer would be 2=2
Step-by-step explanation:
a). A = {x ∈ R I 5x-8 < 7}
5x - 8 < 7 <=> 5x < 8+7 <=> 5x < 15 =>
x < 3 => A = (-∞ ; 3)
A ∩ N = {0 ; 1 ; 2}
A - N* = (-∞ ; 3) - {1 ; 2}
b). A = { x ∈ R I 7x+2 ≤ 9}
7x+2 ≤ 9 <=> 7x ≤ 7 => x ≤ 1 => x ∈ (-∞ ; 1]
A ∩ N = {0 ; 1}
A-N* = (-∞ ; 1)
c). A = { x ∈ R I I 2x-1 I < 5}
I 2x-1 I < 5 <=> -5 ≤ 2x-1 ≤ 5 <=>
-4 ≤ 2x ≤ 6 <=> -2 ≤ x ≤ 3 => x ∈ [-2 ; 3]
A ∩ N = {0 ; 1 ; 2 ; 3}
A - N* = [-2 ; 3) - {1 ; 2}
d). A = {x ∈ R I I 6-3x I ≤ 9}
I 6-3x I ≤ 9 <=> -9 ≤ 6-3x ≤ 9 <=>
-15 ≤ -3x ≤ 3 <=> -5 ≤ -x ≤ 3 =>
-3 ≤ x ≤ 5 => x ∈ [-3 ; 5]
A ∩ N = {0 ; 1 ; 2 ; 3 ; 4 ; 5}
A - N* = [-3 ; 5) - {1 ; 2 ; 3 ; 4}