Answer:
Sedimentary
Explanation:
The process by which rock fragments are moved from the source is Sedimentary.
Answer:
2.The density of air increases and thendecreases as the sound wave passes.
Explanation:
Sound waves are mechanical waves, which consist of oscillation of the particles in the medium where the wave is transmitted through.
Sound waves are also longitudinal waves, which means that the direction of oscillations of the particles of the medium occurs in a direction parallel to the direction of motion of the wave (so, essentially back and forth).
Due to the nature of longitudinal waves, they create alternating regions of the medium where the density of particles are higher and lower. The former are called compressions, while the latter are called rarefactions.
Therefore, when a sound wave travels through the air, the density of one region of air continuously changes: compression first (high density), rarefaction then (lower density), then compression again, etc..
Explanation:
Assuming constant density, the pressure at a depth h is:
P = Patm + ρgh
3 (1.013×10⁵ Pa) = 1.013×10⁵ Pa + (1025 kg/m³) (9.81 m/s²) h
h = 20.1 m
Answer: 1.64 *10^19 electrons
Explanation: In order to the explain this problem we have to consider the following:
The current= charge/time; so
as the electrons move in the tungsten wire we have:
0.526 C/s= N electrons per second* charge of electron=
N electrons/s= 0.526/1.6*10^-19= 3.28 *10^18 electrons/s
Then, during 5 seconds will pass:
3.28 *10^18 electrons/s*5 5s= 1.64 *10^19 electrons