Answer:
1201 lbs
Explanation:
Given that in mammals, the weight of the heart is approximately 0.5% of the total body weight.
Let the weight of the heart of a mammal be H
And the weight of the total body be B
The linear model that can gives the heart weight in terms of the total body weight will be:
H = 0.005B
B.) To find the weight of the heart of a whale whose weight is 2.402 × 105 lbs, substitute the whole weight in the formula.
H = 0.005 × 2.402 × 10^5
H = 1201 lbs
Therefore, the weight of the heart of the whale is 1201 lbs
Answer:
diameter of largest orbit is 0.60 m
Explanation:
given data
isotopes accelerates KE = 6.5 MeV
magnetic field B = 1.2 T
to find out
diameter
solution
first we find velocity from kinetic energy equation
KE = 1/2 × m×v² ........1
6.5 × 1.6 ×
= 1/2 × 1.672 ×
×v²
v = 3.5 ×
m/s
so
radius will be
radius =
........2
radius =
radius = 0.30
so diameter = 2 × 0.30
so diameter of largest orbit is 0.60 m
Answer:
6.0 N
Explanation:
The strength of a force is expressed as the magnitude of the force in Newton.
The formula to apply here is :
Force= mass * acceleration
F=ma
Mass, m = 4 kg
Acceleration = 1.5 m/s²
Force= 4 *1.5 = 6.0 N
Answer:
Explanation:
Electric field between plates of a parallel plate capacitor is uniform .
In a uniform electric field , relation between electric field and potential gradient is as follows
electric field = potential gradient [ E = - dV / dl ]
in the given case ,
dV = 51 V ,
dl = 4 cm
= 4 x 10⁻² m
E = 51 / 4 x 10⁻²
= 12.75 x 10² V / m
= 1275 V / m
Answer:
6.88 mA
Explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ = 
or
I₀ = 
or
I₀ = 0.0109 A
also,
I = ![I_0[1-e^{-\frac{t}{\tau}}]](https://tex.z-dn.net/?f=I_0%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%7D%5D)
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I = ![0.0109[1-e^{-\frac{\tau}{\tau}}]](https://tex.z-dn.net/?f=0.0109%5B1-e%5E%7B-%5Cfrac%7B%5Ctau%7D%7B%5Ctau%7D%7D%5D)
or
I =
or
I = 0.00688 A
or
I = 6.88 mA