1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
3 years ago
7

Any two lines lie in exactly one plane. True False

Mathematics
1 answer:
egoroff_w [7]3 years ago
6 0
<u>Answer:</u> False

<u>Explanation / Counterexample:</u> Two lines in a 3-dimensional space can lie in two different planes. 
You might be interested in
(5x-6)(x-1)&gt;0.5×(2x)(x)5x²-5x-6x+6&gt;x²5x²-5x-6x+6-x²&gt;04x²-11x+6&gt;0(x-2)(4x-3)what is x?
Aloiza [94]

Answer:

download Microsoft math solver app .

I am pretty sure that this app will help you to solve this question

3 0
2 years ago
These are the options<br> (0,-5)<br> (4,-2)<br> (8,2)<br> (-16,-17)<br> (-1,-8)<br> (-40,-34)
Liono4ka [1.6K]
All you need to do is plug in the points!

Here we go:

3(0)- 4(-5)-8

If it equals 12, then it is a point and an answer. 

3(0)- 4(-5)-8= 12 

(0,-5) is a point!

Next one:

3(4)-4(-2)-8

12+8-8
That equals twelve. (4,-2) is an answer as well!

I am going to quickly plug in the rest of the points, since I think you have the idea. 
<span>(8,2)  3(8)-4(2)-8= 8 This is not an answer. 
(-16,-17)  3(-16)-4(-17)-8 = 12 This is answer. 
(-1,-8)      3 (-1)-4(-8)-8= 21 This is not an answer. 
(-40,-34) 3(-40)-4(-34)-8= 8 This is not an answer.
</span>
I hope this helped you!

Brainliest answer is always appreciated!
3 0
3 years ago
Need help ASAP please
OlgaM077 [116]

Step-by-step explanation:

sue = 18 sweets

tony= 18 sweets

(sue)      S= (18 - x)-5

(tony)     T=(18 + x) ÷ 2

hope this helps :)

6 0
3 years ago
Joe purchased a tray of 48 petunias to plant in his garden. The graph shows points representing the number of flowers left to pl
Svet_ta [14]

Answer:

Required equation is y - 36 = (24 - 36)/(2 - 1) (x - 1)

y - 36 = -12(x - 1)

y - 36 = -12x + 12

12x + y = 12 + 36

12x + y = 48

Step-by-step explanation:

7 0
3 years ago
Find the area of the regular polygon​
Y_Kistochka [10]

Answer:

A = 374.123 ft^2

Step-by-step explanation:

First, lets calculate the perimeter:

Perimeter (p) = side length (s) * number of sides (n)

p = s * n

p = 12 * 6

p = 72

Next, lets find the apothem, which is the shortest length from any side to the middle. It's like the radius in a circle, but more complicated.

Apothem (a) = side length (s) / ( 2 * tan(180/number of sides (n)) )

a = \frac{s}{2 * tan (\frac{180}{n} )}

a = \frac{12}{2 * tan (\frac{180}{6} )}

a = \frac{12}{2 * \frac{\sqrt{3} }{3}}

a = \frac{12}{\frac{2\sqrt{3} }{3}}

a = \frac{12*3}{2\sqrt{3}}

a = \frac{6*3}{\sqrt{3}}

a = \frac{18}{\sqrt{3}}

Now, finally, to find the area of a regular polygon, we use the following equation:

Area (A) = ( apothem (a) * perimeter (p) ) / 2

A = \frac{a * p}{2}

A = \frac{\frac{18}{\sqrt{3} }  * 72}{2}

A = \frac{18}{\sqrt{3}}  * 36

A = \frac{640}{\sqrt{3}}

Turning into a decimal:

A = 374.123 ft ^2

8 0
3 years ago
Other questions:
  • If f(x)=9x-8, which of the following is the inverse of f(x)?
    5·1 answer
  • The Capulet and Montague families love writing. Last year, each Capulet wrote 44 essays, each Montague wrote 66 essays, and both
    11·1 answer
  • Find the possible values or r in the inequality 5 &gt; r -3
    8·2 answers
  • First equation x-y=8<br> second equation x+y=6
    11·1 answer
  • Please help me its hard for me​
    12·1 answer
  • The first hexagon is dilated to form the second hexagon. Select answers from the drop-down menus to correctly complete the state
    8·2 answers
  • Write 0.04 in two forms. Fraction and percentage out of 100
    12·2 answers
  • Graph this. <br><br> y−3=12(x+3)
    6·2 answers
  • Please help and tell me answers I'll give you brainliest if you do it fast please and thank you!
    6·1 answer
  • HELP ME NOW!!!!!!!!!! (ALGEBRA)
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!