<u>Answer:</u> In a chemical reaction, the total mass of the particles in the system stays the same
<u>Explanation:</u>
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side in a chemical reaction.
Every balanced chemical reaction follows law of conservation of mass.
<u>For Example:</u> Formation of water molecule

Total mass on reactant side = ![[2(2\times 1)+(2\times 16)]=36g/mol](https://tex.z-dn.net/?f=%5B2%282%5Ctimes%201%29%2B%282%5Ctimes%2016%29%5D%3D36g%2Fmol)
Total mass on product side = ![[2((2\times 1)+16)]=36g/mol](https://tex.z-dn.net/?f=%5B2%28%282%5Ctimes%201%29%2B16%29%5D%3D36g%2Fmol)
Hence, in a chemical reaction, the total mass of the particles in the system stays the same
Answer:
71%
Explanation:
Theoretical Yield = 24
Actual Yield = 17
(Actual Yield/Theoretical Yield)*100% = (17/24)*100% ≈ 71%
Answer:
0.962 atm.
97.4 kPa.
731 torr.
14.1 psi.
97,434.6 Pa.
Explanation:
Hello.
In this case, given the available factors equaling 1 atm of pressure, each required pressure turns out:
- Atmospheres: 1 atm = 760 mmHg:

- Kilopascals:: 101.3 kPa = 760 mmHg:

- Torrs: 760 torr = 760 mmHg:

- Pounds per square inch: 14.69 psi = 760 mmHg:

- Pascals: 101300 Pa = 760 mmHg:

Best regards.