Answer:
It is true answer. Ozone = O3
While the material retains its chemical makeup, the physical property may be examined. The given statement is true.
The matter can undergo variations in physical or chemical properties. The physical changes of a matter occur when the matter undergoes changes in its physical properties like changes in the state of matter, weight, color, etc.
But the chemical composition of matter will remain constant if it undergoes a physical change. Whereas in chemical change, the matter undergoes a change in the composition of the substance but there will be no change in the physical properties.
Hence, The assertion is correct in that physical properties can be seen while the substance's chemical makeup stays constant.
To learn more about physical and chemical change, visit: brainly.com/question/21509240
#SPJ4
In a combustion of a hydrocarbon compound, 2 reactions are happening per element:
C + O₂ → CO₂
2 H + 1/2 O₂ → H₂O
Thus, we can determine the amount of C and H from the masses of CO₂ and H₂O produced, respectively.
1.) Compute for the amount of C in the compound. The data you need to know are the following:
Molar mass of C = 12 g/mol
Molar mass of CO₂ = 44 g/mol
Solution:
0.5008 g CO₂*(1 mol CO₂/ 44 g)*(1 mol C/1 mol CO₂) = 0.01138 mol C
0.01138 mol C*(12 g/mol) = 0.13658 g C
Compute for the amount of H in the compound. The data you need to know are the following:
Molar mass of H = 1 g/mol
Molar mass of H₂O = 18 g/mol
Solution:
0.1282 g H₂O*(1 mol H₂O/ 18 g)*(2 mol H/1 mol H₂O) = 0.014244 mol H
0.014244 mol H*(1 g/mol) = 0.014244 g H
The percent composition of pure hydrocarbon would be:
Percent composition = (Mass of C + Mass of H)/(Mass of sample) * 100
Percent composition = (0.13658 g + 0.014244 g)/(<span>0.1510 g) * 100
</span>Percent composition = 99.88%
2. The empirical formula is determined by finding the ratio of the elements. From #1, the amounts of moles is:
Amount of C = 0.01138 mol
Amount of H = 0.014244 mol
Divide the least number between the two to each of their individual amounts:
C = 0.01138/0.01138 = 1
H = 0.014244/0.01138 = 1.25
The ratio should be a whole number. So, you multiple 4 to each of the ratios:
C = 1*4 = 4
H = 1.25*4 = 5
Thus, the empirical formula of the hydrocarbon is C₄H₅.
3. The molar mass of the empirical formula is
Molar mass = 4(12 g/mol) + 5(1 g/mol) = 53 g/mol
Divide this from the given molecular weight of 106 g/mol
106 g/mol / 53 g/mol = 2
Thus, you need to multiply 2 to the subscripts of the empirical formula.
Molecular Formula = C₈H₁₀
Answer:
C3 H6 Cl 3
Explanation:
C -24.2%
H - 4.0%
Cl - (100-24.2 - 4.0)=73.8 %
We can take 100g of the substance, then we have
C -24.2 g
H - 4.0 g
Cl - 73.8 g
Find the moles of these elements
C -24.2 g/12.0 g/mol =2.0 mol
H - 4.0 g/1.0 g/mol = 4. 0 mol
Cl - 73.8 g/ 35.5 g/mol = 2.1 mol
Ratio of these elements gives simplest formula of the substance
C : H : Cl = 2 : 4 : 2 = 1 : 2 : 1
CH2Cl
Molar mass (CH2Cl) = 1*12.0 +2*1.0 + 1*35.5 = 49.5 g/mol
Real molar mass = 150 g/mol
real molar mass/ Molar mass (CH2Cl) = 150 /49.5=3
So, Real formula should be C3 H6 Cl 3.
Answer:
it is 90 km in one hour it is 90km/h
90/60=1,5