Answer:
C) 0.19
Step-by-step explanation:
A correlation coefficient is a measure of how well the line of best fit fits the data. The higher the correlation coefficient, up to 1.0 or -1.0, the better the fit. A positive correlation coefficient means an increasing data set, while a negative correlation coefficient means a decreasing data set.
We can see that this line of best fit is increasing, so our correlation coefficient will be positive.
However we can also see that the points are fairly scattered; this means this is not a very good fit. This means that 0.19 is the better fit.
Answer:
the branch of mathematics dealing with the relations of the sides and angles of triangles and with the relevant functions of any angles.
Step-by-step explanation:
Answer:
Using either method, we obtain: 
Step-by-step explanation:
a) By evaluating the integral:
![\frac{d}{dt} \int\limits^t_0 {\sqrt[8]{u^3} } \, du](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cint%5Climits%5Et_0%20%7B%5Csqrt%5B8%5D%7Bu%5E3%7D%20%7D%20%5C%2C%20du)
The integral itself can be evaluated by writing the root and exponent of the variable u as: ![\sqrt[8]{u^3} =u^{\frac{3}{8}](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bu%5E3%7D%20%3Du%5E%7B%5Cfrac%7B3%7D%7B8%7D)
Then, an antiderivative of this is: 
which evaluated between the limits of integration gives:

and now the derivative of this expression with respect to "t" is:

b) by differentiating the integral directly: We use Part 1 of the Fundamental Theorem of Calculus which states:
"If f is continuous on [a,b] then

is continuous on [a,b], differentiable on (a,b) and 
Since this this function
is continuous starting at zero, and differentiable on values larger than zero, then we can apply the theorem. That means:
