1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorLugansk [536]
3 years ago
6

Identify a necessary part of the process by which legal immigrants become citizens.

Physics
2 answers:
amm18123 years ago
6 0

Answer:

Participating in an oath ceremony

Explanation:

From Study Island:

D.  

proving the existence of employment

Explanation Next Question

Exceptionalism, Expanding Rights, and LeadershipToolsSave Session

Questions:0 of 20 Answered

1234567891011121314151617181920

Answered

Current

Unanswered

7 of 20 AnsweredSession Timer: 4:12Session Score: 86% (6/7)

Explanation

close

Legal immigrants who wish to become citizens must participate in an oath ceremony after they complete the application and testing process. By taking the oath, the person renounces his or her former nationality, promises to obey the laws of the land, and to take up arms if necessary to protect the United States.

beks73 [17]3 years ago
5 0
<span>The Naturalization Test</span>
You might be interested in
एक वाक्य में उत्तर लिखिए : 1. आज किसको बचाने की मांग है? 2. जीव कब तक जगत में रह सकता है? १. कवि किसको शुद्ध रखने की बात करते है
lilavasa [31]

Answer:

I can't understand

my friend

5 0
3 years ago
Read 2 more answers
An electron is released from rest at a distance of 6.00 cm from a proton. If the proton is held in place, how fast will the elec
lana66690 [7]

Answer:

91.87 m/s

Explanation:

<u>Given:</u>

  • x = initial distance of the electron from the proton = 6 cm = 0.06 m
  • y = initial distance of the electron from the proton = 3 cm = 0.03 m
  • u = initial velocity of the electron = 0 m/s

<u>Assume:</u>

  • m = mass of an electron = 9.1\times 10^{-31}\ kg
  • v = final velocity of the electron
  • e = magnitude of charge on an electron = 1.6\times 10^{-19}\ C
  • p = magnitude of charge on a proton = 1.6\times 10^{-19}\ C

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.

Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.

\therefore \textrm{Kinetic energy change}= \textrm{Change in potential energy}\\\Rightarrow \dfrac{1}{2}m(v^2-u^2)= \dfrac{kpe}{y}-\dfrac{kpe}{x}\\\Rightarrow \dfrac{1}{2}m(v^2-(0)^2)= \dfrac{kpe}{0.03}-\dfrac{kpe}{0.06}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{3}-\dfrac{100kpe}{6}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{6}\\

\Rightarrow v^2= \dfrac{100kpe\times 2}{6m}\\\Rightarrow v^2= \dfrac{100kpe}{3m}\\\Rightarrow v^2= \dfrac{100\times 9\times 10^9\times 1.6\times 10^{-19}\times 1.6\times 10^{-19}}{3\times 9.1\times 10^{-31}}\\\Rightarrow v^2=8.44\times 10^3\\\Rightarrow v=91.87\ m/s\\

Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.

8 0
3 years ago
Explain why the amplitude of the wave did not change when you increased the frequency of the stimulation. how well did the resul
barxatty [35]
The amplitude did not change when the recurrence was expanded on the grounds that the long headstrong time of the heart forestalls adjustment. It is the most extreme removal or separation moved by a point on a vibrating body or wave measured from its balance position. It is equivalent to the one-a large portion of the length of the vibration way.
5 0
4 years ago
A boy got out of a boat and as he
emmainna [20.7K]

Answer:

third law of motion

Explanation:

6 0
3 years ago
Torque can cause the angular momentum vector to rotate in UCM. This motion is called ___________.
emmainna [20.7K]

Torque can cause the angular momentum vector to rotate in UCM. This motion is called _Conservation of Angular momentum__________.

Answer:

Conservation of Angular momentum

Explanation:

The motion of an object in a circular path at constant speed is known as uniform circular motion (UCM). An object in UCM is constantly changing direction, and since velocity is a vector and has direction, you could say that an object undergoing UCM has a constantly changing velocity, even if its speed remains constant.

The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur.

Key Points

When an object is spinning in a closed system and no external torques are applied to it, it will have no change in angular momentum.

The conservation of angular momentum explains the angular acceleration of an ice skater as she brings her arms and legs close to the vertical axis of rotation.

If the net torque is zero, then angular momentum is constant or conserved.

Angular Momentum

The conserved quantity we are investigating is called angular momentum. The symbol for angular momentum is the letter L. Just as linear momentum is conserved when there is no net external forces, angular momentum is constant or conserved when the net torque is zero. We can see this by considering Newton’s 2nd law for rotational motion:

τ→=dL→dt, where  

τ is the torque. For the situation in which the net torque is zero,  

dL→dt=0.

If the change in angular momentum ΔL is zero, then the angular momentum is constant; therefore,

⇒

L  =constant

L=constant (when net τ=0).

This is an expression for the law of conservation of angular momentum.

Example and Implications

An example of conservation of angular momentum is seen in an ice skater executing a spin,  The net torque on her is very close to zero,

because (1) there is relatively little friction between her skates and the ice, and (2) the friction is exerted very close to the pivot point.

Conservation of angular momentum is one of the key conservation laws in physics, along with the conservation laws for energy and (linear) momentum. These laws are applicable even in microscopic domains where quantum mechanics governs; they exist due to inherent symmetries present in nature.

7 0
3 years ago
Other questions:
  • Astronomers have discovered several volcanoes on io, a moon of jupiter. one of them, named loki, ejects lava to a maximum height
    13·1 answer
  • In an incompressible three-dimensional flow field, the velocity components are given by u = ax + byz; υ = cy + dxz. Determine th
    14·1 answer
  • Suppose the total momentum of two masses before a collision is 100 kg m/s. What is the total momentum of the two masses after th
    13·1 answer
  • A car is traveling to the right with a speed of 29\,\dfrac{\text m}{\text s}29
    7·1 answer
  • In a position vs. time graph depicting the motion of two different objects, the point at which the lines intersect is where the
    6·1 answer
  • An electromagnetic wave has a frequency of 793 Hz. What is<br> its wavelength?
    6·1 answer
  • A Hunter points his gun at a squirrel on a branch of a tree away from him. Assume he lies on the ground and that the moment he f
    13·1 answer
  • If the electric potential in a region is given by v(x)=7/x2 the x component of the electric field in that region is
    9·1 answer
  • Which of the following iS an example of a falsifiable hypothesis that could lead to scientific knowledge?
    11·1 answer
  • A load of 50N attached to a spring hanging vertically stretches the spring is 5cm . The spring is now placed horizontally on a t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!