Given that the function of the wave is f(x) = cos(π•t/2), we have;
a. The graph of the function is attached
b. 4 units of time
c. Even
d. 4.935 J/kg
e. 1.234 W/kg
<h3>How can the factors of the wave be found?</h3>
a. Please find attached the graph of the signal created with GeoGebra
b. The period of the signal, T = 2•π/(π/2) = <u>4</u>
c. The signal is <u>even</u>, given that it is symmetrical about the y-axis
d. The energy of the signal is given by the formula;
Which gives;
E = 0.5 × 1.571² × 1² × 4 = <u>4.935 J/kg</u>
e. The power of the wave is given by the formula;
E = 0.5 × 1.571² × 1² × 4 × 0.25 = <u>1.234 W/</u><u>kg</u>
Learn more about waves here:
brainly.com/question/14015797
I would have to see the graph.. but by looking at one one online, they are between points D and E.
Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.
Assuming the gas behaves ideally,
PV/T = constant. P will also be constant in this giving us:
V₁/T₁ = V₂/T₂
40/320 = 20/T₂
T₂ = 160 K
The answer is A.