Answer:
Option B. 32 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 128 g
Half-life (t½) = 2.25 billion years
Number of half-lives (n) = 2
Amount remaining (N) =?
The amount of 128 gram of Radium-226 that will remain after 2 half-lives has elapsed can be obtained as followb
N = 1/2ⁿ × N₀
N = 1/2² × 128
N = 1/4 × 128
N = 0.25 × 128
N = 32 g
Therefore, 32g of the sample will remain.
<span>6.67 metros por segundo
~ Haga 800/120 que equivale a 6.67 porque hay 60 segundos en un minuto y hay dos minutos, entonces 60 veces 2 es igual a 180, luego configure su problema
</span>
Espero que esto te ayude:)
BMI is a measure of body fat determined by ones Height, Weight, and Gender.
Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find