The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
[r] =6
Solve for r by simplifying both sides of the equation, then isolating the variable.
<em> </em>I hope this makes sense
Answer: Heterogeneous mixture - the parts are not uniformly mixed.
A mixture contains components having distinct chemical properties. There are two types of mixtures: homogeneous and heterogeneous. In a homogeneous mixture there is uniform distribution of components. we cannot distinguish one portion of the mixture from another. for example salt mixed in water. In heterogeneous mixture, the components are not uniformly mixed. hence, we are able to distinguish different parts of a mixture, like the mixture of iron, sand and salt given in this question.
Answer:
<em>The distance is now 4d</em>
Explanation:
<u>Mechanical Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = m.a
Where a is the acceleration of the object.
The acceleration can be calculated by solving for a:

Once we know the acceleration, we can calculate the distance traveled by the block as follows:

If the block starts from rest, vo=0:

Substituting the value of the acceleration:

Simplifying:

When a force F'=4F is applied and assuming the mass is the same, the new acceleration is:

And the distance is now:

Dividing d'/d:

Simplifying:

Thus:
d' = 4d
The distance is now 4d
If you'r referring to some objects, it means that the mass of the object is less than the water so it floats. If the mass of an object is greater than the mass of the water, it will sink. Compare it to a balloon, helium makes it rise, while normal air makes it sink.