Answer:
For part (a): pHsol=2.22
Explanation:
I will show you how to solve part (a), so that you can use this example to solve part (b) on your own.
So, you're dealing with formic acid, HCOOH, a weak acid that does not dissociate completely in aqueous solution. This means that an equilibrium will be established between the unionized and ionized forms of the acid.
You can use an ICE table and the initial concentration ofthe acid to determine the concentrations of the conjugate base and of the hydronium ions tha are produced when the acid ionizes
HCOOH(aq]+H2O(l]⇌ HCOO−(aq] + H3O+(aq]
I 0.20 0 0
C (−x) (+x) (+x)
E (0.20−x) x x
You need to use the acid's pKa to determine its acid dissociation constant, Ka, which is equal to
Answer:
The element from Group 13.
Explanation:
Following trends of the periodic table, atomic radius of the elements increase going down from the right side and decrease on its way up diagonally to the left. (sry if u can't understand me)
Explanation:
The generated Na+ and OH-ions are immediately surrounded by molecules of water (typically 6, each). There is the development of the exothermic hydration sphere for each ion. It seems as though there is negative overall energy of dissolving solid NaOH.
Now, since this dissolution is exothermic the temperature of the mixture rises.
<span>1 Cu + 2 H</span>₂<span>SO</span>₄<span> = 1 CuSO</span>₄<span> + 2 H</span>₂<span>O + 1 SO</span>₂
Coefficient od CuSO₄ = 1
hope this helps!
Answer:
1. aa
2. They have similar DNA
Explanation:
1. According to the question 1, wrinkled seeds (A) are dominant over round seeds (a) in pea plants. This means that, based on the law of dominance proposed by Mendel, wrinkled seeds will be expressed over round seeds in a heterozygous state (Aa).
However, since the round seed phenotype is a recessive trait, it will only be expressed when the alleles for round seeds (a) are the same in the gene i.e. aa genotype.
2. Based on the information in question 2, Ricky, who is working on a family tree for his school project, realizes that his close relatives all look similar in the pictures he collected. This is possible because of the SIMILARITY OF THEIR DNA (genetic material). Note that, relatives are connected by the genes that are inherited from one another, hence, they possess a similar DNA, which is the most valid reason for the resemblance.