When a neutral atom<span> gains </span>electron<span>, creating an anion, the </span>atom's radius<span> increases.</span>
<h3>
Answer:</h3>
266.325 g
<h3>
Explanation:</h3>
We are given the balanced equation;
2NaOH + H₂SO₄ → H₂O + Na₂SO₄
We are required to determine the mass of Na₂SO₄ that will be formed.
<h3>Step 1: Determine the number of moles of NaOH</h3>
Moles = Mass ÷ molar mass
Molar mass of NaOH is 40.0 g/mol
Therefore;
Moles of NaOH = 150 g ÷ 40 g/mol
= 3.75 moles
<h3>Step 2: Determine the number of moles of sodium sulfate formed</h3>
- From the equation 2 moles of NaOH reacts with sulfuric acid to form 1 mole of sodium sulfate.
- Therefore; mole ratio of NaOH : Na₂SO₄ is 2 : 1
Thus, moles of Na₂SO₄ = Moles of NaOH ÷ 2
= 3.75 moles ÷ 2
= 1.875 moles
<h3>Step 3: Determine the mass of Na₂SO₄ produced.</h3>
we know that;
Mass = Moles × Molar mass
Molar mass of Na₂SO₄ is 142.04 g/mol
Therefore;
Mass of Na₂SO₄ = 1.875 moles × 142.04 g/mol
= 266.325 g
Thus, the mass of sodium sulfate formed 266.325 g
Answer:
Scientific models are used to explain phenomena that can not be experience directly and it is also used for prediction.
Explanation:
An example of idea model is the Eistein equation. An idea model shows how things interact together to produce a particular result.
An example of physical model is the solar system.
Computer model is used to predict long term events and an example of this is computer simulations.
Answer: The final concentration when 5 ml of a 2.5M copper sulphate solution is diluted to 750 ml is 0.017 M
Explanation:
According to the dilution law,
where,
= molarity of stock
solution = 2.5 M
= volume of stock
solution = 5 ml
= molarity of diluted
solution = ?
= volume of diluted
solution = 750 ml
Putting in the values we get:
Therefore the final concentration when 5 ml of a 2.5M copper sulphate solution is diluted to 750 ml is 0.017 M
Answer:
B) As you move across the row, the number of electrons increases and reactivity also increases.
Explanation:
The periodic table is arranged in a way that if you go across a period, the number of protons, neutrons, and electrons in an element increases. In terms of reactivity, the most reactive elements are the ones which have a high electronegativity. The electronegativity of the elements increases as you travel to the right and upwards on the periodic table.