Hello!
First you need to calculate q
<span>delta U is change in internal energy </span>
<span>delta U = q + w </span>
<span>q is heat and w work done </span>
<span>here work was done by the system means energy leaving the system so w is negative </span>
<span>delta U = q + w </span>
<span>q = delta U - w = 6865 J - (-346 J) = 7211 J = 7.211 KJ </span>
<span>q = m x c x delta T </span>
<span>7211 J = 80.0 g x c x (225-25) °C </span>
<span>c = 0.451 J /g °C
</span>
Hope this Helps! Have A Wonderful Day! :)
Answer:
The options are unclear, however, the correct option is:
Aqueous solutions of ionic compounds cause to dissociate, hence, ions are free to conduct electricity
Explanation:
Ionic compounds are compounds formed from ions (charged atoms). For example, NaCl is an ionic compound from the following ions; Na+ (cation) and Cl- (anion). One characteristics of ionic compounds is their ability to dissociate into the ions that form them when in an aqueous solution i.e. NaCl will dissociate into Na+ and Cl- when in an aqueous solution.
These disssociated ions are free to conduct electricity, hence, making ionic compounds good conductors of electricity.
Condensation is the change of water from its gaseous form (water vapor) into liquid water. Condensation generally occurs in the atmosphere when warm air rises, cools and looses its capacity to hold water vapor. As a result, excess water vapor condenses to form cloud droplets.
Yes. Heating up the solvent gives the molecules more kinetic energy. The more rapid motion means that the solvent molecules collide with the solute with greater frequency and the collisions occur with more force. Both factors increase the rate at which the solute dissolves.
Answer:
The ground state configuration is the lowest energy, most stable arrangement. An excited state configuration is a higher energy arrangement (it requires energy input to create an excited state). Valence electrons are the electrons utilised for bonding.
or the
FIGURE 5.9 The arrow shows a second way of remembering the order in which sublevels fill. Table 5.2 shows the electron configurations of the elements with atomic numbers 1 through 18.
Element Atomic number Electron configuration
sulfur 16 1s22s22p63s23p4
chlorine 17 1s22s22p63s23p5
argon 18 1s22s22p63s23p6
or the
Two electrons
Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its electron configuration is 1s22s1.
Explanation:
<em>Choose </em><em>your </em><em>answer </em>
<em>brainlilest </em><em>me</em>
<em><u>CARRY </u></em><em><u>ON </u></em><em><u>LEARNING</u></em>