The changes that are common between sauce burning on a stove, and jewelry tarnishing, which is a chemical change.
How to define chemical and physical changes?
Chemical Change-
Any alteration that produces new chemical substances with distinct properties is considered a chemical change. Chemical reactions involve the rearrangement and recombination of elements and compounds to create new substances. Examples of chemical changes are listed below:
- Burning
- Digestion
- chemicals changing colors
- Tarnishing
- compost rotting
Physical Change-
A substance is not destroyed or transformed into something new by physical changes. A substance can undergo physical changes that alter its shape, size, or phase. The constituents of an element or compound do not change during a physical change. Examples of physical changes are listed below:
- Boiling water
- Chopping, Cutting, Carving
- Evaporation
- Freezing, Melting, Condensation
To know more about chemical and physical changes, visit the given link:
brainly.com/question/20628019
#SPJ4
Answer:
<em><u>Peptide bonds form between the amino group of the amino acid attached to the A-site tRNA and the carboxyl group of the amino acid attached to the P-site tRNA. The formation of each peptide bond is catalyzed by peptidyl transferase, an RNA-based enzyme that is integrated into the 50S ribosomal subunit.</u></em>
Answer:
A non-polar liquid.
Explanation:
Whether a substance dissolves quickly or not depends on how strongly the molecules (or atoms of an element) of a substance are attracted to one another. These interactions between atoms and/or molecules are called intermolecular forces, or IMFs for short. There are several different ones, and these are distinguished from <em>intra</em>molecular forces which are the bonds holding atoms in the molecule together. Attached is a nice little summary of these forces to consider. Our decision lies within the fact that we must pick the substance that experiences the strongest IMF (the one with the most energy). As it turns out, a dipole in a molecule confers some charge distribution on the molecule which makes slightly positive and negative ends. These can attract each other, and it's called dipole-dipole interactions. It can technically happen in a mixture, but let's assume we're dealing with pure substances. Dipoles can only form in polar compounds however, so a non-polar liquid (which is composed of non-polar molecules), will lack these dipoles and therefore cannot form dipole-dipole interactions between the molecules. This results in only having something called dispersion forces (which really every molecule attraction has - so this is the only one). It is very weak, and since the attraction between these molecules is weak, they will tend to come apart, and evaporate. You can think of the IMFs like glue, and a weak glue will not hold the molecules together well, and they will evaporate away.
On the other hand, polar (from dipole interactions) compounds can have general dipole-dipole interactions or hydrogen-bonding interactions (which is a special type of dipole-dipole interaction). H-bonding requires a Hydrogen bonded to either a Nitrogen, Oxygen, or Fluorine to do this. The main thing, is the non-polar ones don't have a dipole, and so they can't form a good intermolecular bond and evaporate quickly.
Water can H-bond, which is why it takes so long to dry and for it to evaporate in general. Nail polish, which is really a solution of acetone, has considerably weaker dipole-dipole bonds (compared to H-bonds), and evaporates quicker than water. Hope this helps!
Note: Figure taken from Chemistry: The Molecular Nature of Matter and Change 8th edition.
Answer:
metals, 88 , periodic table , luster , heat, electricity , thin, right, opposite , appearance , luster , malleable , ductile, opposite , shiny, moderately
Explanation:
metals, 88 , periodic table , luster , heat, electricity , thin, right, opposite , appearance , luster , malleable , ductile, opposite , shiny, moderately Is the answer.
(Hope this helps can I pls have brainlist (crown)☺️)