Answer:
Mass, temperature, and phase.
I think temperature because the higher the temperature of a given quantity of a substance, more is its thermal energy. Similarly, for the same temperature, higher mass of a substance will contain more thermal energy.
Answer:
A. CsBr(s)
Explanation:
we will get here compound with the lowest lattice energy
solution
As we know that Lattice energy is always proportional to the charge of ions and it is inversely proportional to the size of ions.
so that by the smallest charge and the largest size give us the lowest lattice energy and that charge and size is express as here as
Charge
Cs (+1), K(+1), Na (+1), Cl(-1), Br(-1), Sr(+2), Ca(+2), O(-2) .......................1
and
Size
Na+ < Ca2+ < K+ < Sr2+ < Cs+, O2- < Cl- < Br- ..........................2
so that here
correct answer is A. CsBr
When two atoms of the same element are covalently bonded, the radius of each atom will be half the distance between the two nuclei because they equally attract the electrons. The reason for this trend is that the bigger the radii, the further the distance between the two nuclei. Hope this helps:)
Answer:
4.186 L
Explanation:
Using the pv=nrt equation and converting the grams of O2 into mols. After finding the number of mols by dividing 5.98 by 32 (2*the atomic weight of O) you plug that into the equation. So then you have 1*V=.186875*.08206*273 then you rearrange the equation to solve for v and get 4.186 L
We first calculate the energy contained in one photon of this light using Planck's equation:
E = hc/λ
E = 6.63 x 10⁻³⁴ x 3 x 10⁸ / 590 x 10⁻⁹
E = 3.37 x 10⁻²² kJ/photon
Now, one mole of atoms will excite one mole of photons. This means that 6.02 x 10²³ photons will be excited
(3.37 x 10⁻²² kJ/photon) x (6.02 x 10²³ photons / mol)
The energy released will be 202.87 kJ/mol