The dimensions of the prism can be 2x, 2x+3 and x+6.
We first factor out the GCF of the trinomial. The GCF of the coefficients is 2. Each term has an x in common as well, so the GCF is 2x.
Factoring out the 2x, we have
2x(2x²+15x+18).
To factor the remaining trinomial, we find factors of 2*18=36 that sum to 15. 12*3 = 36 and 12+3 = 15. We split up 15x into 12x and 3x:
2x(2x²+12x+3x+18)
Now we group together the first two terms in parentheses and the last two:
2x((2x²+12x)+(3x+18))
Factor out the GCF of the first group:
2x(2x(x+6)+(3x+18))
Factor out the GCF of the second group:
2x(2x(x+6)+3(x+6))
Factoring out what these have in common,
2x(x+6)(2x+3)
6 subsets are possible, but the number of subsets depends on the problem
Answer:
Look it up. it will help you work it out. hope this helped.
Step-by-step explanation:
Answer:
option D
Lines a and b are parallel and lines c and d are parallel.
Step-by-step explanation:
Given in the question four lines a , b, c, d.
<h3>
Prove one</h3>
If two parallel lines (a,b) are cut by a transversal(d), then corresponding angles m<7 and m<15 are congruent.
They are know as corresponding angles.
Hence lines a and b are parallel.
<h3>Prove two</h3>
If two parallel lines (c,d) are cut by a transversal(d), then corresponding angles m<13 and m<15 are congruent.
They are know as corresponding angles
Hence lines c and d are parallel
Answer:
List method: {7,9,11,13,15,17,19}
Set method: {X:N where N is odd, N>5 and N<21}