Answer:
2. Na2O
Reasoning:
Na (soduim) is the only metal out of all the elements in the answer choices, and is bonded with oxygen, a nonmetal, therefore creating an ionic bond.
Answer:
K = 3.37
Explanation:
2 NH₃(g) → N₂(g) + 3H₂(g)
Initially we have 4 mol of ammonia, and in equilibrium we have 2 moles, so we have to think, that 2 moles have been reacted (4-2).
2 NH₃(g) → N₂(g) + 3H₂(g)
Initally 4moles - -
React 2moles 2m + 3m
Eq 2 moles 2m 3m
We had produced 2 moles of nitrogen and 3 mol of H₂ (ratio is 2:3)
The expression for K is: ( [H₂]³ . [N₂] ) / [NH₃]²
We have to divide the concentration /2L, cause we need MOLARITY to calculate K (mol/L)
K = ( (2m/2L) . (3m/2L)³ ) / (2m/2L)²
K = 27/8 / 1 → 3.37
Answer:
Energy lost is 7.63×10⁻²⁰J
Explanation:
Hello,
I think what the question is requesting is to calculate the energy difference when an excited electron drops from N = 15 to N = 5
E = hc/λ(1/n₂² - 1/n₁²)
n₁ = 15
n₂ = 5
hc/λ = 2.18×10⁻¹⁸J (according to the data)
E = 2.18×10⁻¹⁸ (1/n₂² - 1/n₁²)
E = 2.18×10⁻¹⁸ (1/15² - 1/5²)
E = 2.18×10⁻¹⁸ ×(-0.035)
E = -7.63×10⁻²⁰J
The energy lost is 7.63×10⁻²⁰J
Note : energy is lost / given off when the excited electron jumps from a higher energy level to a lower energy level
<span>The solution to the problem is as follows:
125/58.69 = 2.12 mol
</span>
Therefore, there are 2.12 moles of <span>nickel (Ni) atoms are in 125 g Ni.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
-12.5 kJ/mol
Explanation:
The free-energy predicts if a reaction is spontaneous or not. If it is, ΔG < 0. When a reaction happens by steps, the free-energy of the global reaction can be calculated by the sum of the free-energy of the steps (Hess law). If it's needed to operations at the reaction the same operation must be done in the value of ΔG (if the reaction is inverted, the signal of ΔG must be inverted).
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
ATP → ADP + Pi ∆G'° = –30.5 kJ/mol (x-1)
--------------------------------------------------------------------------------------
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
Pi + ADP → ATP ∆G'° = 30.5 kJ/mol
The bold compounds are in opposite sides, so they'll be canceled in the sum of the reactions:
Phosphocreatine + ADP → creatine + ATP
∆G'° = -43.0 + 30.5
∆G'° = -12.5 kJ/mol