7/4 ÷ 8/7
To divide fraction multiply the first fraction by the reciprocal of the second fraction:
7/4 x 7/8 = (7x7) / (4x8) = 49/32
Answer:
i dont get it
Step-by-step explanation:
<u>Given</u>:
Given that we need to prove the identity ![\sin x+\sin x \tan ^{2} x=\tan x \sec x](https://tex.z-dn.net/?f=%5Csin%20x%2B%5Csin%20x%20%5Ctan%20%5E%7B2%7D%20x%3D%5Ctan%20x%20%5Csec%20x)
<u>Proof</u>:
Step 1: Factor out the common term sin x, we get;
![\sin x\left(1+\tan ^{2} x\right)=tan \ x \ sec \ x](https://tex.z-dn.net/?f=%5Csin%20x%5Cleft%281%2B%5Ctan%20%5E%7B2%7D%20x%5Cright%29%3Dtan%20%5C%20x%20%5C%20sec%20%5C%20x)
Step 2: Using the identity ![1+tan^2 x=sec^2x](https://tex.z-dn.net/?f=1%2Btan%5E2%20x%3Dsec%5E2x)
![\sin x \sec ^{2} x=tan \ x \ sec \ x](https://tex.z-dn.net/?f=%5Csin%20x%20%5Csec%20%5E%7B2%7D%20x%3Dtan%20%5C%20x%20%5C%20sec%20%5C%20x)
Step 3: Reciprocating sec x, we get;
![\sin x \cdot \frac{1}{\cos ^{2} x}=tan \ x \ sec \ x](https://tex.z-dn.net/?f=%5Csin%20x%20%5Ccdot%20%5Cfrac%7B1%7D%7B%5Ccos%20%5E%7B2%7D%20x%7D%3Dtan%20%5C%20x%20%5C%20sec%20%5C%20x)
Step 4: Splitting the denominator, we have;
![\frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}=tan \ x \ sec \ x](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%20x%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B%5Ccos%20x%7D%3Dtan%20%5C%20x%20%5C%20sec%20%5C%20x)
Simplifying, we get;
![\tan x \sec x=\tan x \sec x](https://tex.z-dn.net/?f=%5Ctan%20x%20%5Csec%20x%3D%5Ctan%20x%20%5Csec%20x)
Thus, the identity is proved.
Answer:
the answer is 75
Step-by-step explanation:in total there are 5 full baskets and each holds 15 apples so 15 x 5 =75 and that is your answer.
So the first two line segments added together equals the full line segment. So, 8y + 5 + 7y = 13y + 25
15y + 5 = 13y + 25
2y = 20
y = 10