The reaction for magnesium iodide when put into water is as below
MgI2(s) → Mg^2+(aq) + 2I^-(aq)
when magnesium iodide but into water it dissociate/ ionize completely into Mg^2+ and 2l^- ions. Magnesium iodide dissociate/ionize completely because magnesium iodide is a strong electrolyte which dissociate/ ionize completely into their ions when it is put into water .
P₄O₁₀ + 6H₂O → 4H₃PO₄
The equation shows us that the molar ratio of
P₄O₁₀ : 6H₂O = 1:6
We also know that one mole of a substance contains 6.02 x 10²³ particles. We can use this to calculate the moles of water.
moles(H₂O) = (5.51 x 10²³) / (6.02 x 10²³)
= 0.92 mole
That means moles of P₄O₁₀ = 0.92 / 6
= 0.15
Each mole of P₄O₁₀ contains 4 moles of P.
moles(P) = 4 x 0.15 = 0.6 mol
Mr of P = 207 grams per mol
Mass of P = 207 x 0.6
= 124.2 grams
B because it can stabilize
Answer:
Magnesium chloride/Molar mass
95.211 g/mol
Explanation:
apparently colorless light, for example ordinary daylight. It contains all the wavelengths of the visible spectrum at equal intensity.