Answer:
The equation to show the the correct form to show the standard molar enthalpy of formation:

Explanation:
The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states.
Given, that 1 mole of
gas and 1 mole of
liquid gives 2 moles of HBr gas as a product.The reaction releases 72.58 kJ of heat.

Divide the equation by 2.

The equation to show the the correct form to show the standard molar enthalpy of formation:

<em>Same group element have same</em><em><u> Valence electron</u></em><em> and behave similarly in </em><em><u>Chemistry.</u></em>
<u>Explanation:</u>
For example. First group elements Alkali metals:- H, Li, K, Rb, Cs, Fr
Valance electron will take part in forming a bond with other elements and compound will form. All the above-given elements (H-Fr) have valence electron 1 in outer most 'S' shell. All have electronic configuration S1
Behavior: Since valence electrons are the same so the behavior of all the elements in this group is the same. All are metal (from Li-Fr, except Hydrogen), all are very reactive, does not found in native state in the environment, and all react with water.
Which of the following describes a chemical property of oxygen
<h3>
Answer:</h3>
78.75 K
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial pressure, P₁ = 500 torr
- Initial temperature,T₁ = 225 K
- Initial volume, V₁ = 3.3 L
- Final volume, V₂ = 2.75 L
- Final pressure, P₂ = 210 torr
We are required to calculate the new temperature, T₂
- To find the new temperature, T₂ we are going to use the combined gas law;
- According to the combined gas law;
P₁V₁/T₁ = P₂V₂/T₂
We can calculate the new temperature, T₂;
Rearranging the formula;
T₂ =(P₂V₂T₁) ÷ (P₁V₁)
= (210 torr × 2.75 L × 225 K) ÷ (500 torr × 3.3 L)
= 78.75 K
Therefore, the new volume of the sample is 78.75 K