u is at (1,-2)
V is at (-6,-6)
using distance formula it is about 8.06 long
so Answer is C
For the answer to the question above, I'll provide my solutions to my answers for the problem below.
(–2x3y2 + 4x2y3 – 3xy4) – (6x4y – 5x2y3 – y5)
(−2x3)(y2)+4x2y3+−3xy4+−1(6x4y)+−1(−5x2y3)+−1(−y5)
(−2x3)(y2)+4x2y3+−3xy4+−6x4y+5x2y3+y5
−2x3y2+4x2y3+−3xy4+−6x4y+5x2y3+y5
−2x3y2+4x2y3+−3xy4+−6x4y+5x2y3+y5
(−6x4y)+(−2x3y2)+(4x2y3+5x2y3)+(−3xy4)+(y5)
−6x4y+−2x3y2+9x2y3+−3xy4+y5
So the answer is,
= <span><span><span><span><span>−<span><span>6x4</span>y</span></span>−<span><span>2x3</span>y2</span></span>+<span><span>9x2</span>y3</span></span>−<span>3xy4</span></span>+y5</span>
I hope this helps
The absolute value parent function.

At first Divide the figure into two rectangles, I and Il
Area of figure l is ~
Area of figure ll is ~
Area of whole figure = Area ( l + ll )
that is equal to ~
Given:
A figure of a circle and two secants on the circle from the outside of the circle.
To find:
The measure of angle KLM.
Solution:
According to the intersecting secant theorem, if two secant of a circle intersect each other outside the circle, then the angle formed on the intersection is half of the difference between the intercepted arcs.
Using intersecting secant theorem, we get



Multiply both sides by 2.

Isolate the variable x.


Divide both sides by 7.


Now,




Therefore, the measure of angle KLM is 113 degrees.