Answer:

Step-by-step explanation:
Given
![\sqrt[3]{217}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B217%7D)
Required
Solve
Linear approximated as:

Take:

So:
![f(x) = \sqrt[3]{x}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5D%7Bx%7D)
Substitute 216 for x
![f(x) = \sqrt[3]{216}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5D%7B216%7D)

So, we have:



To calculate f'(x);
We have:
![f(x) = \sqrt[3]{x}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5D%7Bx%7D)
Rewrite as:

Differentiate

Split


Substitute 216 for x



So:





Answer:
b
Step-by-step explanation:
Y is three times the value of x , It can be said that y is directly proportional to Y .
Direct proportion is when an increase in the independent variable causes an increase in the dependent variable.
the equation for direct proportion is :
y = bx
y = dependent variable
b = constant
x = independent variable
Answer:
Alright so basically
Step-by-step explanation:
<h2>⟰ ANSWER ⟰</h2>
<h3>ANS IS IN THE PIC</h3>
<h2> HOPE IT HELPS U!!!!(:</h2>