Answer:
Volume
Explanation:
Density:
Density is equal to the mass of substance divided by its volume. In order to find the density of earth when mass is given we have to calculate its volume. The volume of earth is calculated by using the volume formula for sphere. i.e 4/3 π r³. we also require radius to find the volume and we know that
Diameter = 2 × radius
The diameter of earth equator is 12756.75 Km. So we calculate the radius by dividing the diameter by 2. Then by putting the value of radius in 4/3 π r³ we will get the volume and then we can calculate the density of earth.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Answer:
For example, a suitcase jam-packed with clothes and souvenirs has a high density, while the same suitcase containing two pairs of underwear has low density. Size-wise, both suitcases look the same, but their density depends on the relationship between their mass and volume. Mass is the amount of matter in an object.
Answer:
1. C
2. C
3. A
4. C
5. True
6. C
Explanation:
1. C The answer is conduction because the heat was transferred through direct contact.
2. C The answer convection because the heat was transferred through a medium (liquid/gas).
3. A The answer is conduction because the heat was transferred through direct contact.
4. C The answer is radiation because the heat was transferred through thermal emission.
5. True. This is because the air that is warmed rises, causing the cool air to replace it. You can picture it like the scenario in question 2.
6. C
Answer:
it is B because if u said A or D it would have been wrong and if u said C u would be going left.
Explanation:
Answer:
Solubility in water Anhydrous: 74.5 g/100 mL (20 °C) Hexahydrate: 49.4 g/100 mL (−25 °C) 59.5 g/100 mL (0 °C) 65 g/100 mL (10 °C) 81.1 g/100 mL (25 °C) 102.2 g/100 mL (30.2 °C) α-Tetrahydrate: 90.8 g/100 mL (20 °C) 114.4 g/100 mL (40 °C) Dihydrate: 134.5 g/100 mL (60 °C) 152.4 g/100 mL (100 °C)