Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (2, -3)
Point (6, -3)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [Slope Formula]:

- [Fraction] Subtract:

- [Fraction] Divide:

bibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabibloteccabiblotecca
Answer:
See below.
Step-by-step explanation:
The graph is very unclear, but if you look at x = 2, and you go up until you intersect a point on the line, the y-coordinate of that point is the value written on the graph to the left of the y-axis.
Answer:
Required Probability = 0.605
Step-by-step explanation:
Let Probability of people actually having predisposition, P(PD) = 0.03
Probability of people not having predisposition, P(PD') = 1 - 0.03 = 0.97
Let PR = event that result are positive
Probability that the test is positive when a person actually has the predisposition, P(PR/PD) = 0.99
Probability that the test is positive when a person actually does not have the predisposition, P(PR/PD') = 1 - 0.98 = 0.02
So, probability that a randomly selected person who tests positive for the predisposition by the test actually has the predisposition = P(PD/PR)
Using Bayes' Theorem to calculate above probability;
P(PD/PR) =
=
=
= 0.605 .
The answer would be D....