In a) the final equation is AgNO3 + KCl = AgCl + KNO3, b) Ni(NO3)2 + Na2S = 2NaNO3 + NiS; c) CaCl2 + Na2CO3 = 2 NaCl + CaCO3. In 2) The total net equation is Ca 2+ + CO32- = CaCO3 (s).
<u>Charge:</u>
An electron has a negative charge and a <em>n</em>eutron has a <em>n</em>eutral charge.
<u>Size:</u>
Electrons have a really small mass whereas the neutron has a mass of about 1 amu.
<u>Location:</u>
Neutrons are found in center of an atom, but electrons are around it.
<u>Number:</u>
The number of electrons and neutrons in atom varies.
Answer:
21 g/mL
Explanation:
To solve this problem, first look at the density equation, which is D=M/V, which D stands for density, M stands for mass, and V stands for volume. When you substitute in the variables, you get D=17.5/.82, which is equivalent to 21.34. However, since we need to pay attention to the sig fig rules for multiplying, we need to have the same amount of sig figs as the value with the least amount of sig figs, which is the number .82. .82 has two sig figs, so you round down. Your answer will be 21 g/mL.
To answer this question, you need to know <span>Graham's Law of Effusion/Diffusion formula. In this formula, the rate of diffusion/effusion would be influenced by the mass. As the molecule has bigger mass, the rate should be slower because it will be harder to pass the membrane. The calculation should be:</span>
<span>Rate 1 / Rate 2 = √[M2/M1]
</span>4.11/1= √[M2/2]
M2=33.78 g/mol
Answer: The final volume of this solution is 0.204 L.
Explanation:
Given: Molarity of solution = 2.2 M
Moles of solute = 0.45 mol
Molarity is the number of moles of solute present divided by volume in liters.

Substitute the values into above formula as follows.

Thus, we can conclude that the final volume of this solution is 0.204 L.