The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer:
None
Explanation:
Cl₂ is above Br₂ in the activity series.
Bromine will not displace chlorine from its salts.
The reaction will not occur.
Answer:
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Explanation:
The given nuclear reaction shows alpha decay.
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Properties of alpha radiations:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
1245 liters because you move the decimal place over to the right six times
The molar concentration is 1.11M.
<h3>What is molar concentration?</h3>
The phrase "molar concentration" (also known as "molarity," "amount concentration," or "substance concentration") refers to the amount of a substance per unit volume of solution and is used to describe the concentration of a chemical species, specifically a solute, in a solution. The most frequent measure of molarity in chemistry is the number of moles per liter, denoted by the unit symbol mol/L or mol/dm3 in SI units. A solution with a concentration of 1 mol/L is referred to as 1 molar, or 1 M.
<h3>Given : </h3>
Volume of the solution = 2L
Mass of glucose given = 200g
Concentration of glucose= ?
<h3>Formula use: </h3>
Molarity = no. of moles of solute / volume of the solution (L)
Moles of solute = given mass of solute / molar mass of the solute
<h3>Solution: </h3>
No. of moles of solute( glucose ) = 200 / 180 = 1.11 moles'
Molarity = 1.11 / 2 = 0.5555 mol L ^(-1)
Therefore, the molar concentration of glucose in the solution = 0.555 mol L ^(-1)
To learn more about molar concentration :
brainly.com/question/15532279
#SPJ4