Ca(OH)2(aq) + 2HCl(aq)------> CaCl2(aq) + 2H2O(l) ΔH-?
CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), Δ<span>H = -186 kJ
</span>
CaO(s) + H2O(l) -----> Ca(OH)2(s), Δ<span>H = -65.1 kJ
</span>
1) Ca(OH)2 should be reactant, so
CaO(s) + H2O(l) -----> Ca(OH)2(s)
we are going to take as
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
2) Add 2 following equations
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
<span><u>CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), and ΔH = -186 kJ</u>
</span>Ca(OH)2(s)+CaO(s) + 2HCl(aq)--->CaO(s) + H2O(l)+CaCl2(aq) + H2O(l)
Ca(OH)2(s)+ 2HCl(aq)---> H2O(l)+CaCl2(aq) + H2O(l)
By addig these 2 equation, we got the equation that we are needed,
so to find enthalpy of the reaction, we need to add enthalpies of reactions we added.
ΔH=65.1 - 186 ≈ -121 kJ
<span>An aqueous solution is produced when a solute dissolves in water. The biggest responsible is the water that is the solvent of substances in smaller proportion as some ions of K +, Na +, Cl -, forming true solutions. Occurs when a solute dissolves in the water solvent, the separation between the substances is atomic, molecular or ionic, depending on the solution.</span>
Answer:
The Density Calculator uses the formula p=m/V, or density (p) is equal to mass (m) divided by volume (V). The calculator can use any two of the values to calculate the third. Density is defined as mass per unit volume.
Electronegativity of boron is the highest in the group and it will form covalent bonds in all his combinations.
The rest of the group will form bonds with intermediate nature between covalent and ions bods in their respective compounds, with thallium (Tl) behaving most close to a metal.
Moreover boron have a very high melting points (around 2200 °C) while in the boron cristal the chemical bonds are directed in space, similar with carbon suggesting his nature as a non-metal.
Other elements form the group Al, Ga, In, Tl have lower melting points 660, 30, 157 and 304 °C, respectively. Also in the elemental state, they have metallic characteristics: metalic luster, ductility, high electrical and thermal conductivity.
1000 kilojoules of electrical energy gets transformed into 1000 kilojoules of kinetic energy.