Answer:
When hypercapnia processes occur, where the concentration of carbon dioxide gas increases in the blood, the protonization of the blood increases, this means that the H + ions increase in concentration, thus generating metabolic acidosis.
This metabolic acidosis is regulated by various systems, but the respiratory system collaborates by generating hyperventilation, to increase blood oxygen pressures, decrease CO2 emissions, and indirectly decrease acidity.
Explanation:
This method of regulating the body is crucial, since the proteins in our body will not be altered if they do not happen.
The enzymes, the red globules, and many more fundamental things for life ARE PROTEINS, that in front of acidic media these modify their structure by denaturing themselves and ceasing to fulfill their functions. This is the reason why it seeks to neutralize the blood pH when it comes to an increase in CO2.
Hydrogen Bonding will effect the boiling point the most. Let's take an example Butane a four carbon unsaturated organic compound with molecular formula C₄H₁₀ and boiling point -1 °C.
H₃C-CH₂-CH₂-CH₃
Now, replace one hydrogen on terminal carbon with -OH group and convert it into Butanol.
H₃C-CH₂-CH₂-CH₂-OH
The Boiling point of Butanol is 117.7 °C. This increase in boiling point is due to formation of hydrogen bondings between the molecules of Butanol.
Yeah im here and i am alos getting bored to
what are you doing and how is your day ?
Although 1013.25 mb (760 mm Hg) is considered to be the standard atmospheric pressure at sea level, it does not mean that the pressure at this level has this value, actually this being 1011 mb.