Answer:
The false statement is in option 'd': The center of mass of an object must lie within the object.
Explanation:
Center of mass is a theoretical point in a system of particles where the whole mass of the system is assumed to be concentrated.
Mathematically the position vector of center of mass is defined as

where,
is the position vector of the mass dm.
As we can see for homogenous symmetrical objects such as a sphere,cube,disc the center of mass is located at the centroid of the shapes itself but in many shapes it is located outside the body also.
Examples of shapes in which center of mass is located outside the body:
1) Horseshoe shaped body.
2) A thin ring.
In many cases we can make shapes of bodies whose center of mass lies outside the body.
That would be a nebula, which is an interstellar cloud of hydrogen gas, dust, and plasma. It is the first stage of a star's cycle.
<span>earth would be thrown off its balance and nature would be in danger of too many resources and not enough resources </span>
Answer:
answer a, 4
Explanation:
when the 4 is before the compound it applies to the whole compound
Clock wise idk i think you should double check my answer