Answer:
(a) Charge density σ=6.6375×10²nC/m²
(b) Total charge Q=1.47×10²nC
Explanation:
Given Data
A=47.0 cm =0.47 m
Electric field E=75.0 kN/C
To find
(a) Charge density σ
(b)Total Charge Q
Solution
For (a) charge density σ
From Gauss Law we know that
Φ=Q/ε₀.......eq(i)
Where
Φ is electric flux
Q is charge
ε₀ is permittivity of space
And from the definition of flux
Φ = EA
The flux is electric field passing perpendicularly through the surface
Put the this Φ in equation(i)
EA
=Q/ε₀
where Q(charge)=σA
EA=(σA)/ε₀
E=σ/ε₀
σ=ε₀E

σ=6.6375×10²nC/m²
For (b) total charge Q
Q=σA

If you give it unbalanced force it would go up and if you can't give it enough it will stay a balanced force
Answer:
Wavelength, 
Explanation:
Given that,
Mass of the particle, 
Acceleration of the particle, 
Time, t = 5 s
It starts from rest, u = 0
The De Broglie wavelength is given by :

v = a × t



Hence, this is the required solution.
Answer:
1.013 s
Explanation:
You can solve this problem using the equations for constant acceleration motion. The velocity at the bottom of the window can be found using this expression:

the gravity is negative as it opposes the movement.

Now, the time elapsed before the ball reappears is 2 times the time that it takes for the ball to go from the bottom of the window, reach maximum height, and reach again the bottom of the window, minus 2 times the time that it takes for the ball to travel from the top to the bottom of the window. The time that takes to the ball to reach maximum height, or in other words, to time that takes for the velocity of the ball to go from vo to 0m/s:

Then:
