1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ronch [10]
3 years ago
15

A particle (m = 4.3 × 10^-28 kg) starting from rest, experiences an acceleration of 2.4 × 10^7 m/s^2 for 5.0 s. What is its de B

roglie wavelength λ at the end of this period?
Physics
1 answer:
Novay_Z [31]3 years ago
4 0

Answer:

Wavelength, \lambda=1.28\times 10^{-14}\ m

Explanation:

Given that,

Mass of the particle, m=4.3\times 10^{-28}\ kg

Acceleration of the particle, a=2.4\times 10^7\ m/s^2

Time, t = 5 s

It starts from rest, u = 0

The De Broglie wavelength is given by :

\lambda=\dfrac{h}{mv}

v = a × t

\lambda=\dfrac{h}{mat}

\lambda=\dfrac{6.67\times 10^{-34}}{4.3\times 10^{-28}\times 2.4\times 10^7\times 5}

\lambda=1.28\times 10^{-14}\ m

Hence, this is the required solution.

You might be interested in
When an object travels a large distance in a small amount of time, the object's speed is
Kisachek [45]
If I were to go from the United States to China in one second, that's a large distance in an incredibly short time. I'd say that's pretty fast.

If I were to go from my room to the door of my room in a year, then that would be unbearably slow.
8 0
3 years ago
Help ;-;
nasty-shy [4]

Answer:

all qn 1,2,3 have same answer ,. Yes,. hope it helps

3 0
3 years ago
How is Coulomb’s law similar to newton’s law of gravitational force? How is it different
natulia [17]

The similarities and the differences between gravitational and electric force are listed below

Explanation:

- The magnitude of the gravitational force between two objects is given by Newton's law of gravitation:

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m_1, m_2 are the masses of the two objects

r is the separation between them

- Coloumb's law gives instead the strength of the electrostatic force between two charged objects, which is

F=k\frac{q_1 q_2}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_1, q_2 are the two charges

r is the separation between the two charges

By comparing the two equations, we find the following similarities:

  • Both the forces are inversely proportional to the square of the distance between the two objects, F\propto \frac{1}{r^2}
  • Both the forces are proportional to the product between the "main quantity" of each force, which is the mass for the gravitational force (F\propto m_1 m_2) and the charge for the electric force (F\propto q_1 q_2

Instead, we have the following differences:

  • The gravitational force is always attractive, since the sign of m is always positive, while the electric force can be either attractive or repulsive, since the sign of q can be either positive or negative
  • The value of the gravitational costant G is much smaller than the value of the Coulomb's constant, so the gravitational force is much weaker than the electric force

Learn more about gravitational force and electric force:

brainly.com/question/1724648

brainly.com/question/12785992

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

5 0
3 years ago
An electric turntable 0.730 mm in diameter is rotating about a fixed axis with an initial angular velocity of 0.240 rev/srev/s a
Zolol [24]

Answer:

a) \omega = 0.421\,\frac{rev}{s}, b) \Delta \theta = 0.066\,rev, c) v = 0.966\,\frac{mm}{s}, d) a = 3.293\,\frac{mm}{s^{2}}

Explanation:

a) The angular velocity of the turntable after 0.200\,s.

\omega = \omega_{o} + \alpha\cdot \Delta t

\omega = 0.240\,\frac{rev}{s}  + (0.906\,\frac{rev}{s^{2}} )\cdot (0.2\,s)

\omega = 0.421\,\frac{rev}{s}

b) The change in angular position is:

\Delta \theta = \omega_{o}\cdot t + \frac{1}{2} \cdot  \alpha \cdot t^{2}

\Delta \theta = (0.240\,\frac{rev}{s} )\cdot (0.2\,s) + \frac{1}{2}\cdot (0.906\,\frac{rev}{s^{2}} )\cdot (0.2\,s)^{2}

\Delta \theta = 0.066\,rev

c) The tangential speed of a point on the rim of the turn-table:

v = r\cdot \omega

v = (0.365\times 10^{-3}\,m)\cdot (0.421\,\frac{rev}{s} )\cdot (\frac{2\pi\,rad}{1\,rev} )

v = 9.655\times 10^{-4}\,\frac{m}{s}

v = 0.966\,\frac{mm}{s}

d) The tangential and normal components of the acceleration of the turn-table:

a_{t} = (0.365\times 10^{-3}\,m)\cdot (0.906\,\frac{rev}{s^{2}})\cdot (\frac{2\pi\,rad}{1\,rev} )

a_{t} = 2.078\times 10^{-3}\,\frac{m}{s^{2}}

a_{t} = 2.078\,\frac{mm}{s}

a_{n} = (0.365\times 10^{-3}\,m)\cdot \left[(0.421\,\frac{rev}{s} )\cdot (\frac{2\pi\,rad}{1\,rev} )\right]^{2}

a_{n} = 2.554\times 10^{-3}\,\frac{m}{s^{2}}

a_{n} = 2.554\,\frac{mm}{s^{2}}

The magnitude of the resultant acceleration is:

a = \sqrt{(2.078\,\frac{mm}{s} )^{2}+(2.554\,\frac{mm}{s} )^{2}}

a = 3.293\,\frac{mm}{s^{2}}

8 0
3 years ago
A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 4.7 1010 m (inside the orbit
Lubov Fominskaja [6]

Answer:

58515.9 m/s

Explanation:

We are given that

d_1=4.7\times 10^{10} m

v_i=9.5\times 10^4 m/s

d_2=6\times 10^{12} m

We have to find the speed (vf).

Work done by surrounding particles=W=0 Therefore, initial energy is equal to final energy.

K_i+U_i=K_f+U_f

\frac{1}{2}mv^2_i-\frac{GmM}{d_1}=\frac{1}{2}mv^2_f-\frac{GmM}{d_2}

\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2}=\frac{1}{2}v^2_f

v^2_f=2(\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2})

v_f=\sqrt{2(\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2})}

Using the formula

v_f=\sqrt{v^2_i+2GM(\frac{1}{d_2}-\frac{1}{d_1})}

v_f=\sqrt{(9.5\times 10^4)^2+2\times 6.7\times 10^{-11}\times 1.98\times 10^{30}(\frac{1}{6\times 10^{12}}-\frac{1}{4.7\times 10^{10})}

Where mass of sun=M=1.98\times 10^{30} kg

G=6.7\times 10^{-11}

v_f=58515.9 m/s

4 0
3 years ago
Other questions:
  • he graph shows the distance (x) traveled by an aircraft traveling at constant velocity in corresponding time intervals (t). What
    14·1 answer
  • In space, astronauts don’t have gravity to keep them in place. That makes doing even simple tasks difficult. Gene Cernan was the
    13·1 answer
  • Please answer this question for me and explain why.
    6·1 answer
  • The element in a fluorescent lightbulb that absorbs UV light and releases visible light energy is ____?
    9·2 answers
  • Which of the following occurs as a light wave bends when it passes from one medium to another
    6·1 answer
  • What is the number of the lowest energy level that contains an f sublevel?. . 3. . 4. . 5. . 6
    9·1 answer
  • Elevator mass 750kg tension on cable 8950n what is the net force action on the elevator
    13·1 answer
  • Read the following scenario.
    7·2 answers
  • What is the resultant force acting on an object? The first force is 45 N West and the second is 23 N East.
    6·1 answer
  • Which has bigger inertia? Why? Elephant or ant sumo fighter or toddler pickup truck or 16 wheeler.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!