Answer:
mgh= 10 x 8 x 10
= 800
but you can try 10 x 8 x 4^-1 x 10

- The angle between the two vectors is 90° .

- The dot product of two vectors .
- The cross product of two vectors .

⚡ Let
and
are the two vectors .
✍️ We have know that,

Where,



[1] The dot product of two vectors is “ <u>0</u> ” .
✍️ We have know that,

Where,



[2] The cross product of two vectors is “ <u>ab</u> ” .
Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .
Answer:
The speed of the ball was, v = 3 m/s
Explanation:
Given data,
The time period of the ball, t = 8 s
The distance the ball rolled, d = 24 m
The velocity of an object is defined as the object's displacement to the time taken. The formula for the velocity is,
v = d / t m/s
Substituting the given values in the above equation,
v = 24 / 8
= 3 m/s
Hence, the speed of the ball was, v = 3 m/s