1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alecsey [184]
3 years ago
12

When plugging in metric facts, always remember that 1 big unit = # small units. Fill in these facts: 1.________ s= ________μs 2.

____1____ g = 0.001________ kg 3._______ km = ________m 4.________mm = _______ m 5.________mL = ______ L 6._________g = ______ dg 7.________cm = _______ m 8.________ms = ________s
Physics
1 answer:
balandron [24]3 years ago
4 0

Answer:

1. 1 s = 1 x 10⁶ μs

2. 1 g = 0.001 kg

3. 1 km = 1000 m

4. 1 mm = 1 x 10⁻³ m

5. 1 mL = 1 x 10⁻³ L  

6. 1 g = 100 dg

7. 1 cm = 1 x 10⁻² m

8. 1 ms = 1 x 10⁻³ s

Explanation:

1.

1 x 10⁻⁶ s = 1 μs

(1 x 10⁻⁶ x 10⁶) s = 1 x 10⁶ μs

<u>1 s = 1 x 10⁶ μs</u>

2.

1000 g = 1 kg

1 g = 1/1000 kg

<u>1 g = 0.001 kg</u>

3.

<u>1 km = 1000 m</u>

<u></u>

4.

<u>1 mm = 1 x 10⁻³ m</u>

<u></u>

5.

<u>1 mL = 1 x 10⁻³ L</u>

<u></u>

6.

1 x 10⁻² g = 1 dg

(1 x 10⁻² x 10²) g = 1 x 10² dg

<u>1 g = 100 dg</u>

<u></u>

7.

<u>1 cm = 1 x 10⁻² m</u>

<u></u>

8.

<u>1 ms = 1 x 10⁻³ s</u>

You might be interested in
The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero. (a)
Marysya12 [62]

This question is incomplete, the complete question is;

The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero.

(a) Determine the forces and and the couple

(b) Determine the sum of the moments about the right end of the beam.

(c) If you represent the 600-N force, the 200-N force, and the 30 N-m couple by a force F acting at the left end of the beam and a couple M, what is F and M?

Answer:

a)

the x-component of the force at A is A_{x} = 0

the y-component of the force at A is A_{y}  = 400 N

the couple acting at A is; M_{A} = 146 N-m

b)

the sum of the momentum about the right end of the beam is;  ∑M_{R}  = 0

c)

the equivalent force acting at the left end is; F = -400J ( N)

the couple acting at the left end is; M = - 146 N-m

Explanation:

Given that;

The sum of the forces acting on the beam is zero ∑f = 0

Sum of the moments about the left end of the beam is also zero ∑M_{L} = 0

Vector force acting at A, F_{A} = A_{x}i + A_{y}j

Now, From the image, we have;

a)

∑f = 0

F_{A} - 600j + 200j = 0i + 0j

A_{x}i + A_{y}j - 600j + 200j = 0i + 0j

A_{x}i + (A_{y} - 400)j = 0i + 0j

now by equating i- coefficients'

A_{x} = 0

so, the x-component of the force at A is A_{x} = 0

also by equating j-coefficient

A_{y} - 400 = 0

A_{y}  = 400 N

hence, the y-component of the force at A is A_{y}  = 400 N

we also have;

∑M_{L} = 0

M_{A}  - ( 30 N-m ) - ( 0.380 m )( 600 N ) + ( 0.560 m )( 200 N ) = 0

M_{A} - 30 N-m - 228 N-m + 112 Nm = 0

M_{A} - 146 N-m = 0

M_{A} = 146 N-m

Therefore, the couple acting at A is; M_{A} = 146 N-m

b)

The sum of the moments about right end of the beam is;

∑M_{R} = (0.180 m)(600N) - (30 N-m) - ( 0.56 m)(A_{y} ) + M_{A}

∑M_{R} = (108  N-m) - (30 N-m) - ( 0.56 m)(400 N ) + 146 N-m

∑M_{R} = (108 N-m) - (30 N-m) - ( 224 N-m ) + 146 N-m

∑M_{R}  = 0

Therefore, the sum of the momentum about the right end of the beam is;  ∑M_{R}  = 0

c)

The 600-N force, the 200-N force and the 30 N-m couple by a force F which is acting at the left end of the beam and a couple M.

The equivalent force at the left end will be;

F = -600j + 200j (N)

F = -400J ( N)

Therefore, the equivalent force acting at the left end is; F = -400J ( N)

Also couple acting at the left end

M = -(30 N-m) + (0.560 m)( 200N) - ( 0.380 m)( 600 N)

M = -(30 N-m) + (112 N-m) - ( 228 N-m))

M = 112 N-m - 258 N-m

M = - 146 N-m

Therefore, the couple acting at the left end is; M = - 146 N-m

7 0
2 years ago
our friend is constructing a balancing display for an art project. She has one rock on the left (ms=2.25 kgms=2.25 kg) and three
Licemer1 [7]

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The torque produced by the pile of rocks is \tau = 35.63\ N \cdot m  

b

The distance of the single for equilibrium to occur is r_s =1.62 \ m

Explanation:

From the question we are told that

     The mass of the left rock is  m_s = 2.25 \ kg

     The mass of the rock on the right m_p = 10.1 kg

    The distance from  fulcrum to the center of the pile of rocks is  r_p = 0.360 \ m

   

Generally the torque produced by the pile of rock is mathematically represented as

           \tau = m_p * g * r_p

Substituting values

         \tau = 10.1 * 9.8  * 0.360                  

          \tau = 35.63\ N \cdot m      

Generally we can mathematically evaluated the distance of the the single rock that would put the system in equilibrium as follows

   The torque due to the single rock is

           \tau = m_s  * g * r_s

At equilibrium the both torque are equal

            35.63 = m_s * r_s * g

Making r_s the subject of the formula

             r_s = \frac{35.63 }{m_s * g}

Substituting values

            r_s = \frac{35.63 }{2.25 * 9.8}

            r_s =1.62 \ m

6 0
3 years ago
A uniform electric field exists in the region between two oppositely charged plane parallel plates. a proton is released from re
dedylja [7]

According to Newton's second law

E.e = a * mp  ..... (1)

where

E is the magnitude of the electric field; e = 1.6 * 10^-19 is the elementary charge; mp = 1.67*10^-27 kg is the proton mass; a is the acceleration.

So, the distance

l = at^2/2 .......(2)

The proton accelerated

a = 2l / t^2 ...........(3)

From equations (1) and (3)

E= 32.51 V/m

Electric field

The physical field that surrounds electrically charged particles and exerts a force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field).  It can also refer to a system of charged particles' physical field. Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.

To learn more about an electric field refer here:

brainly.com/question/15800304

#SPJ4

5 0
1 year ago
a fast humvee drove from desert a to desert b. for the 12 hours, it travelled at an speed of 185 km/h. for the next 13 hours, it
ivanzaharov [21]

Answer:

I am not sure of the question?

Explanation:

List the question

8 0
3 years ago
Jane is sliding down a slide. What kind of motion is she demonstrating?
Over [174]
When Jane is sliding down a slide, she is demonstrating translational motion. 
5 0
3 years ago
Other questions:
  • A large, semi-truck hauling a full load and a small car are traveling in the same direction. As they approach a sharp curve in t
    15·1 answer
  • (a) calculate the speed of a proton after it accelerates from rest through a potential difference of 215 v. m/s (b) calculate th
    5·1 answer
  • 30N of force is used to raise a box that weight 60N up an incline plane. What is the mechanical advantage of the incline plane?
    10·1 answer
  • A farmer pulls on his obstinate mule with 250 N of force to the right. The ground exerts a reaction force to the mule’s resistan
    11·1 answer
  • The wheel of a car has a radius of 0.413 m. If the wheel rotates at 456 revolutions per minute, what is the speed (in m/s) at wh
    11·2 answers
  • Two roads intersect at right angles, one going north-south, the other east-west. an observer stands on the road 60 meters south
    15·2 answers
  • A vector is 9.55 m long and points in a -48.0 degree direction. find the x-component of the vector.
    6·1 answer
  • In which decade was Sputnik I launched? A. 1930-1939 B. 1950-1959 C. 1960-1969 D. 1980-1989
    15·1 answer
  • Does mass influence how quickly an object falls?
    13·2 answers
  • Sam kicks a soccer ball with an initial velocity of 40 ms-1. If he kicked the ball at an angle of 550, how far did he kick the b
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!