Answer: Velocity=8.26m/s
Explanation:
Acceleration=Finial velocity (V) - Initial velocity (u) ÷ Time
that is, a=v-u/t
a=1.2m/s², v=?, u=5.5m/s, t=2.3s
From a=v-u/t, make v the subject of the formula
v=at + u
v=(1.2* 2.3) + 5.5
v=2.76+5.5
v=8.26m/s
Meters Micrometers centimeters millimeters
The whistling sound from the hearing aids represents that your hearing aids is working perfectly ad is known as the "feedback". So, the given statement is true.
Answer: Option A
<u>Explanation:</u>
It's often sounds irritating when a hearing aids of your grandpa or Grandma whistles. especially, when they put them out of their ears. Actually, this feedback sound from hearing aids occur when the sounds from the outer side bounces back to the microphone of the hearing aids.
The sound bounces back when it doesn't gets inside of your ear canal so that one can hear the sound through the hearing aid. When the sounds bounces back in the hearing aid, it get re-amplified and thus we hear the whistle sound which is known as the feedback of the device.
It's not always the feedback sound though. Sometimes the device whistles when it has some mechanical defect or when one hugs the other one or water gets inside and damaged the whole system.
Answer:
you need to be able to have long enough to reach and have it far away from things that are going to cause accidents
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.