To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
The answer would be slowly
<u>Answer</u>
48 Volts
<u>Explanation</u>
The question can be solve using the turn rule of a transformer that states;
Np/Ns = Vp/Vs
Where Np ⇒ number of turns in the primary coil.
Ns ⇒number of turns in the seconndary coil
Vp ⇒ primary voltage
Vs ⇒secondary voltage
Np/Ns = Vp/Vs
10/4 = 120/Vp
Vp = (120 × 4)/10
= 480/10
= 48 Volts
The temperature of a balloon is
lowered with liquid nitrogen. The balloon appears to deflate because the gas in
the balloon lost energy and condensed. The answer is letter D.