Answer:
a) pH = 2.95
b) pH = 8.94
c) pH = 7.00
d) pH = 4.89
Explanation:
a) The reaction is:
CH₃CH₂COOH(aq) + H₂O(l) ⇄ CH₃CH₂COO⁻(aq) + H₃O⁺(aq)(1)
At equlibrium: 0.1 - x x x
<u>The dissociation constant of equation (1), Ka, is:</u>
![K_{a} = \frac{[C_{3}H_{5}O_{2}^{-}][H_{3}O^{+}]}{[C_{3}H_{6}O_{2}]}](https://tex.z-dn.net/?f=%20K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BC_%7B3%7DH_%7B5%7DO_%7B2%7D%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B3%7DH_%7B6%7DO_%7B2%7D%5D%7D%20)
(2)
<u>Solving equation (2) for x, we have:</u>
x = 0.00113 = [H₃O⁺] = [CH₃CH₂COO⁻]
Hence, the pH is:
b) The reaction is:
CH₃CH₂COO⁻(aq) + H₂O(l) ⇄ CH₃CH₂COOH(aq) + OH⁻(aq)
At equlibrium: 0.1 - x x x
<u>The dissociation constant of the above equation, Kb, is:</u>
![K_{b} = \frac{[C_{3}H_{6}O_{2}][OH^{-}]}{[C_{3}H_{5}O_{2}^{-}]}](https://tex.z-dn.net/?f=%20K_%7Bb%7D%20%3D%20%5Cfrac%7B%5BC_%7B3%7DH_%7B6%7DO_%7B2%7D%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BC_%7B3%7DH_%7B5%7DO_%7B2%7D%5E%7B-%7D%5D%7D%20)
<u>Also, we have that:</u>
![K_{w} = K_{a}*K_{b} \rightarrow K_{b} = \frac{K_{w}}{K_{a}} = \frac{1 \cdot 10^{-14}}{1.3 \cdot 10^{-5}} = 7.69 \cdot 10^{-10}](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%20K_%7Ba%7D%2AK_%7Bb%7D%20%5Crightarrow%20K_%7Bb%7D%20%3D%20%5Cfrac%7BK_%7Bw%7D%7D%7BK_%7Ba%7D%7D%20%3D%20%5Cfrac%7B1%20%5Ccdot%2010%5E%7B-14%7D%7D%7B1.3%20%5Ccdot%2010%5E%7B-5%7D%7D%20%3D%207.69%20%5Ccdot%2010%5E%7B-10%7D%20)
(3)
<u>Solving equation (3) for x, we have:</u>
x = 8.77x10⁻⁶ = [OH⁻] = [CH₃CH₂COOH]
Hence, the pH is:
c) Pure water:
H₂O ⇄ H⁺ + OH⁻
<em>Since is pure water: [H⁺] = [OH⁻]</em>
Therefore, the pH is:
![pH = -log [H^{+}] = -log (1 \cdot 10^{-7}) = 7.00](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%20%3D%20-log%20%281%20%5Ccdot%2010%5E%7B-7%7D%29%20%3D%207.00%20)
d) The reaction is:
CH₃CH₂COOH(aq) + H₂O(l) ⇄ CH₃CH₂COO⁻(aq) + H₃O⁺(aq)
At equlibrium: 0.1 0.1 x
The pH is:
![pH = pKa + log(\frac{[C_{3}H_{5}O_{2}^{-}]}{[C_{3}H_{6}O_{2}]}) = -log(1.3 \cdot 10^{-5}) + log(\frac{0.1}{0.1}) = 4.89](https://tex.z-dn.net/?f=%20pH%20%3D%20pKa%20%2B%20log%28%5Cfrac%7B%5BC_%7B3%7DH_%7B5%7DO_%7B2%7D%5E%7B-%7D%5D%7D%7B%5BC_%7B3%7DH_%7B6%7DO_%7B2%7D%5D%7D%29%20%3D%20-log%281.3%20%5Ccdot%2010%5E%7B-5%7D%29%20%2B%20log%28%5Cfrac%7B0.1%7D%7B0.1%7D%29%20%3D%204.89%20)
I hope it helps you!