Check the picture below.
let's firstly convert the mixed fractions to improper fractions.
![\stackrel{mixed}{7\frac{1}{2}}\implies \cfrac{7\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{15}{2}} ~\hfill \stackrel{mixed}{12\frac{1}{2}}\implies \cfrac{12\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{25}{2}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B7%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B7%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B2%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B12%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B12%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{\textit{\Large Areas}}{\stackrel{two~triangles}{2\left[ \cfrac{1}{2}\left(\cfrac{15}{2} \right)(10) \right]}~~ + ~~\stackrel{\textit{three rectangles}}{(10)(15)~~ + ~~\left( \cfrac{15}{2} \right)(15)~~ + ~~\left( \cfrac{25}{2} \right)(15)}} \\\\\\ 75~~ + ~~150~~ + ~~112.5~~ + ~~187.5\implies \boxed{525}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btwo~triangles%7D%7B2%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2810%29%20%5Cright%5D%7D~~%20%2B%20~~%5Cstackrel%7B%5Ctextit%7Bthree%20rectangles%7D%7D%7B%2810%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B25%7D%7B2%7D%20%5Cright%29%2815%29%7D%7D%20%5C%5C%5C%5C%5C%5C%2075~~%20%2B%20~~150~~%20%2B%20~~112.5~~%20%2B%20~~187.5%5Cimplies%20%5Cboxed%7B525%7D)
So the trapezoid has 2 parallel sides making segments AD and BC transversals
Therefore making angle c and angle b add up to 180
(180-3x) + 3x + 180-9x +9x
180 +12x = 360
180= 12x
x= 15
The trig functions that you need to deal with are
Sine
Cosine
Tangent
Cotangent
Cosecant
Secant
You need to write a single expression using all six trig functions such that the value of the expression equals 3.
To make this as simple as possible, the first thing I would do is look up the values of these functions and identify which ones are equal to either 1/2 or 1.0 or 2.0
sin(30º) = 1/2
sin(90º) = 1
cos(0º) = 1
cos(60º) = 1/2
tan(45º) = 1
csc(30º) = 2
csc(90º) = 1
sec(0º) = 1
sec(60º) = 2
cot(45º) = 1
If we only had to use three trig functions (sin, cos, tan), one possibility is
tan(45º) + cos(0º)/sin(30º) = 1 + 1/(1/2) = 1 + 2 = 3
noticed how I chose one each of the required functions and the operations so that the result = 3.
Now it is up to you to figure out how to combine all six trig functions so that they equal zero. There are many possibilities for you to choose from..
Answer: The function that is represented by the equation y = negative 10 x + 6 has a steeper slope and a greater y-intercept.
Step-by-step explanation: I took the unit test on edge hoped this helped <3