A. Chemical energy can be in many forms including in the chemicals found in food
Answer:
C₆H₁₂O₆ and O₂ are reactant.
CO₂ and H₂O are products.
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + ATP
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced, however carbon dioxide is released in this step.
You could write about a fear you may have had as a child, eg. the dark, or underneath the bed, etc...
<u>Answer:</u> The rate law for the reaction is ![\text{Rate}=k'[H+][H_2O_2][Br^-]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%27%5BH%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D)
<u>Explanation:</u>
Rate law is the expression which is used to express the rate of the reaction in terms of the molar concentration of reactants where each term is raised to the power their stoichiometric coefficient respectively from a balanced chemical equation.
In a mechanism of the reaction, the slow step in the mechanism determines the rate of the reaction.
The chemical equation for the oxidation of bromide ions by hydrogen peroxide in aqueous acid solution follows:

The intermediate reaction of the mechanism follows:
<u>Step 1:</u> 
<u>Step 2:</u> 
<u>Step 3:</u> 
As, step 2 is the slow step. It is the rate determining step
Rate law for the reaction follows:
......(1)
As,
is not appearing as a reactant in the overall reaction. So, we apply steady state approximation in it.
Applying steady state approximation for
from step 1, we get:
![[H_3O_2^+]=K[H^+][H_2O_2]](https://tex.z-dn.net/?f=%5BH_3O_2%5E%2B%5D%3DK%5BH%5E%2B%5D%5BH_2O_2%5D)
Putting the value of
in equation 1, we get:
![\text{Rate}=k.K[H^+][H_2O_2][Br^-]\\\\\text{Rate}=k'[H+][H_2O_2][Br^-]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk.K%5BH%5E%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D%5C%5C%5C%5C%5Ctext%7BRate%7D%3Dk%27%5BH%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D)
Hence, the rate law for the reaction is ![\text{Rate}=k'[H+][H_2O_2][Br^-]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%27%5BH%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D)