<span>Molality(m) or molal concentration is a measure
of concentration and it refers to amount of substance in a specified amount of
mass of the solvent. Used unit for molality is mol/kg which is also
sometimes denoted as 1 molal. It is equal to the moles of solute (the substance
being dissolved) divided by the kilograms of solvent (the substance used to
dissolve).</span>
Molarity(M) or molar concentration is also a
measure of concentration and represents the amount of substance per unit volume
of solution(number of moles per litre of solution. Used unit for molarity is
mol/L or M. A solution with a concentration of 1 mol/L is equivalent to 1 molar
(1 M).
Molality is preferred when
the temperature of the solution varies, because it does not depend on
temperature, (neither number of moles of solute nor mass of solvent will be affected
by changes of temperature), while molarity changes as temperature changes(volume
of solution changes as temperature changes).
Nucleic Acids, Protein Coat,and Lipid Membrane
Answer:
The answers are in the explanation
Explanation:
For the equilibrium:
B(aq) + H₂O(l) ⇌ HB⁺(aq) + OH⁻(aq).
By LeChatelier's principle, the increase in the concentration of a reactant (for example) at equilibrium will change the system counteracting the increasing producing more product.
Thus,
A) Will the equilibrium constant for the reaction increase, decrease, or stay the same? Why?
.
The equilibrium constant is a thermodynamic constant that stay the same with the addition of a compound.
B) Will the concentration of HB⁺(aq) increase, decrease, or stay the same? Why?
By LeChatelier's principle, the addition of B will induce the formation of more HB⁺(aq) increasing the concentration.
C) Will the pH of the solution increase, decrease, or stay the same? Why?
As the addition of B induce the increasing of OH⁻, the pH of the solution will increase.
I hope it helps!
Answer:
the answer is 55 cg/L
Explanation:
Knowing the conversions, there is 100 cg in one g. if there is .55 g/mL then you multiply by a 100 to get 55 cg/L.