Answer:
10.23 grams of sucrose should be added.
Explanation:
1.15 m means molality (moles of solute in 1kg of solvent)
1.15 moles of sucrose are contained in 1 kg of solvent (1000 g)
Let's determine the moles in our mass of solvent.
Firstly we convert the g to kg → 26 g . 1kg/1000g = 0.026 kg
m . mass (kg) = 1.15 mol/kg . 0.026kg → 0.0299 moles.
Finally we convert the moles to mass (mol . molar mass)
0.0299 mol . 342.3 g/mol = 10.23 g
I believe the answer you are looking for is Static Friction. Static Friction is the force that holds an object in place until it starts to move. Then it switches to rolling friction.
For example, if you have a 1/2 ton truck sitting in front of you and the truck is in neutral. (meaning it can roll if pushed). The truck is extremely hard to move at first. That is because static friction is holding it in place until the amount of force exceeds the limit of static friction.
So if we continue to push at the truck and you feel it starting to move, then once it starts moving it is much easier to push, that is because we moved past static friction to rolling friction. Rolling friction is what helps slow things down. If you roll a ball across a carpet floor it eventually comes to a stop.
Answer:
The given statement is true.
Enzymes which are present in the digestive tract such as salivary amylase, pepsin, trypsin, et cetera mainly catalyze the hydrolysis reaction.
The hydrolysis reaction is the reaction by which large molecules are broken down into smaller molecules with the help of water.
Most of the complex molecules or nutrients such as starch, protein et cetera are broken down into their respective smaller units with the help of hydrolysis reaction.
For example, lactase catalyzes the hydrolysis of lactose into glucose and galactose.