Answer: The partial pressure of oxygen in the mixture is 321 mm Hg
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.

Given :
= total pressure of gases = 752 mm Hg
= partial pressure of Helium = 234 mm Hg
= partial pressure of nitrogen = 197 mm Hg
= partial pressure of oxygen = ?
Putting in the values we get:


The partial pressure of oxygen in the mixture is 321 mm Hg
Answer:
0.0010m SO₄²⁻
Explanation:
The freezing point depression due the addition of a solute into a pure solvent follows the equation:
ΔT = Kf×m×i (1)
<em>Where ΔT are °C that freezing point decreases (273.15K - 272.47K = 0.68K = 0.68°C). Kf is the constant of freezing point depression (1.86°C/m), m is molality of the solution (0.1778m) and i is Van't Hoff factor.</em>
Van't Hoff factor could be understood as in how many one mole of the solute (sulfuric acid, H₂SO₄), is dissociated.
H₂SO₄ dissociates as follows:
H₂SO₄ → HSO₄⁻ + H⁺
HSO₄⁻ ⇄ SO₄²⁻ + H⁺
<em>Not all HSO₄⁻ dissociates.</em>
1 Mole of H₂SO₄ dissociates in 1 mole of H⁺+ 1 mole of HSO₄⁻ + X moles of SO₄²⁻= 2 + X
Replacing in (1):
0.68°C = 1.86°C/m×0.1778m×i
2.056 = i
Moles of SO₄²⁻ are 2.056 - 2 = 0.056moles SO₄²⁻.
If 1 mole has a concentration of 0.1778m, 0.056moles are:
0.056moles ₓ (0.1778m / 1mole) =
<h3>0.0010m SO₄²⁻</h3>
D a baiiiiiiiiii good luck
<span>It rises confidence for the reason that the more times you conduct the similar experiment over and over should either demonstrate your hypothesis right and wrong and remove any random incidences that might touch your results. Meaning it permits to have a more accurate measure or conclusion.</span>
Answer:
wind direction, landforms, and surface winds.