1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
3 years ago
15

Copper crystallizes in a face-centered cubic unit cell. the density of copper is 8.94 g/cm3. calculate the length of the edge of

the unit cell in pm.
Chemistry
1 answer:
Ilia_Sergeevich [38]3 years ago
4 0
<span>361.4 pm is the length of the edge of the unit cell. First, let's calculate the average volume each atom is taking. Start with calculating how many moles of copper we have in a cubic centimeter by looking up the atomic weight. Atomic weight copper = 63.546 Now divide the mass by the atomic weight, getting 8.94 g / 63.546 g/mol = 0.140685488 mol And multiply by Avogadro's number to get the number of atoms: 0.140685488 * 6.022140857x10^23 = 8.472278233x10^22 Now examine the face-centered cubic unit cell to see how many atoms worth of space it consumes. There is 1 atom at each of the 8 corners and each of those atoms is shared between 8 unit cells for for a space consumption of 8/8 = 1 atom. And there are 6 faces, each with an atom in the center, each of which is shared between 2 unit cells for a space consumption of 6/2 = 3 atoms. So each unit cell consumes as much space as 4 atoms. Let's divide the number of atoms in that cubic centimeter by 4 to determine the number of unit cells in that volume. 8.472278233x10^22 / 4 = 2.118069558x10^22 Now calculate the volume each unit cell occupies. 1 cm^3 / 2.118069558x10^22 = 4.721280262x10^-23 cm^3 Let's get the cube root to get the length of an edge. (4.721280262x10^-23 cm^3)^(1/3) = 3.61426x10^-08 cm Now let's convert from cm to pm. 3.61426x10^-08 cm / 100 cm/m * 1x10^12 pm/m = 361.4 pm Doing an independent search for the Crystallographic Features of Copper, I see that the Lattice Parameter for copper at at 293 K is 3.6147 x 10^-10 m which is in very close agreement with the calculated amount above. And since metals expand and contract with heat and cold, I assume the slight difference in values is due to the density figure given being determined at a temperature lower than 293 K.</span>
You might be interested in
What’s the fastest way to balance chemical equations
Anon25 [30]

Hey there!

The best way to balance chemical equations is to first start by balancing polyatomic ions such as OH and SO₄.

Next, balance other elements, but save elements that are by themselves for last, such as H₂ or Fe. Once you balance everything else you can do the ones by themselves, it's much easier.

Hope this helps!

6 0
3 years ago
Give the name of one or more polysaccharides that matches each of the following descriptions:
adell [148]

Answer:

A Cellulose not digested by humans.

b. the storage form of carbohydrates in plants is starch

C amylose contains 1-4 glycosidic bond

D Glycogen and starch are highly branched polysaccharides.

Explanation:

8 0
2 years ago
Calculate the osmotic pressure associated with 50.0 g of an enzyme of molecular weight 98 g/mol dissolved in water to give 2600
andrew-mc [135]

Answer:

π = 4,882 atm

Explanation:

To calculate the osmotic pressure (π), the <em>Van´t Hoff equation</em> must be used, which is:

π x V = n x R x T

<em>Where: </em>

• π: Osmotic pressure, which is the difference between the levels of the solution and the pure solvent through a semipermeable membrane, which allows the passage of the solvent but not the solute

• V: Volume of the solution, in liters unit

• n: Number of moles of solute

• R: Constant of ideal gases, equal to 0.08206 L.atm / mol.K

• T: Absolute temperature, in Kelvin degrees

With the data you provide you can calculate the osmotic pressure by clearing it from the equation, we would be equal to:

π = (n x R x T) / V

However, all data must first be converted to the corresponding units in order to replace the values ​​in the equation.

<em>Solution volume ⇒ go from mL to L: </em>

1000 mL of solution ____ 1 L

2600 mL of solution _____ X = 2.6 L

Calculation: 2600 mL x 1 L / 1000 mL = 2.6 L

<em>Temperature ⇒ Go from ° C to K </em>

T (K) = t (° C) + 273.15 = 30.0 ° C + 273.15 = 303.15 K

<em>Number of moles of solute ⇒</em> <em>It can be calculated since we have the mass of the enzyme and its molecular mass: </em>

98.0 g of enzyme ____ 1 mol

50.0 g of enzyme _____ X = 0.510 moles

Calculation: 50.0 g x 1 mol / 98.0 g = 0.510 moles

Now, you can replace the values ​​in the Van´t Hoff equation and you will get the result:

 π = (n x R x T) / V

π = (0.510 mol x 0.08206 L.atm / mol.K x 303.15 K) / 2.6 L = 4.882 atm

Therefore, <em>the osmotic pressure will be 4,882 atm</em>

3 0
3 years ago
A particular laser consumes 130.0 Watts of electrical power and produces a stream of 2.67×1019 1017 nm photons per second.
solniwko [45]

The missing question is:

<em>What is the percent efficiency of the laser in converting electrical power to light?</em>

The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.

A particular laser consumes 130.0 Watt (P) of electrical power. The energy input (Ei) in 1 second (t) is:

Ei = P \times t = 130.0 J/s \times 1 s = 130.0 J

The laser produced photons with a wavelength (λ) of 1017 nm. We can calculate the energy (E) of each photon using the Planck-Einstein's relation.

E = \frac{h \times c }{\lambda }

where,

  • h: Planck's constant
  • c: speed of light

E = \frac{h \times c }{\lambda } = \frac{6.63 \times 10^{-34}J.s  \times 3.00 \times 10^{8} m/s }{1017 \times 10^{-9} m }= 6.52 \times 10^{-20} J

The energy of 1 photon is 6.52 × 10⁻²⁰ J. The energy of 2.67 × 10¹⁹ photons (Energy output = Eo) is:

\frac{6.52 \times 10^{-20} J}{photon} \times 2.67 \times 10^{19} photon = 1.74 J

The percent efficiency of the laser is the ratio of the energy output to the energy input, times 100.

Ef = \frac{Eo}{Ei} \times 100\% = \frac{1.74J}{130.0J} \times 100\% = 1.34\%

The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.

You can learn more about lasers here: brainly.com/question/4869798

8 0
3 years ago
What are the weighting laws?
lora16 [44]

Answer: A comprehensive legal term for uniform standards ascribed to the quantity, capacity, volume, or dimensions of anything. Legislation that adopts and mandates the use of a uniform system of weights and measures is a valid exercise of Police Power, and such laws are constitutional.

Explanation:

8 0
3 years ago
Other questions:
  • How does Pressure affect the solubility of gases?
    10·1 answer
  • A _ is a device that allows a car to use hydrogen gas to operate.
    8·2 answers
  • Which liquids are highly sensitive to both changes in temperature and changes in the electrical field?
    14·2 answers
  • What is the volume of the water in graduated cylinder B?*
    6·1 answer
  • An unknown acid has a hydronium ion concentration of 0.00352. what is its ph
    13·1 answer
  • If 35.0 grams of coal (carbon) burns in 58.5 grams of oxygen gas, how many grams of carbon dioxide can be produced? Describe the
    7·1 answer
  • Help please ! ASAP neeeeeed and answerrrrrr
    10·2 answers
  • Can someone help me determine the name of the formula
    7·1 answer
  • Identify the ideal gas law equation.
    15·2 answers
  • What happends to particles in matter when matter gains heat?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!